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PREFACE

The book in hand is the result of merging an original plan of writing a mono-
graph on orthogonal space-time block coding with the ambition of authoring a
more textbook-like treatment of modern MIMO communication theory, and it
may therefore have the attributes of both these categories of literature. A major
part of the book has resulted from the development of graduate courses at the
universities where the authors are active, whereas a smaller part is the outcome
of the authors’ own research.

Our text covers many aspects of MIMO communication theory, although not
all topics are treated in equal depth. The discussion starts with a review of MIMO
channel modeling along with error probability and information theoretical prop-
erties of such channels, from which we go on to analyze the concepts of receive
and transmit diversity. We discuss linear space-time block coding for flat and fre-
quency selective fading channels, along with its associated receiver structures, both
in general and in particular with emphasis on orthogonal space-time block cod-
ing. We also treat several special topics, including space-time coding for informed
transmitters and space-time coding in a multiuser environment. Furthermore we
include material about the existence and design of amicable orthogonal designs, a
topic which is relevant in the context of orthogonal space-time block coding.

The text focuses on principles rather than on specific practical applications,
although we have tried to illustrate some results in the context of contemporary
wireless standards. MIMO communication theory is a rather multifaceted topic,
and it has been a true challenge to present the material in an as simple and con-
cise form as possible, without compromising mathematical rigor by more than a
negligible extent. To maximize the readability of the book, we have made consis-
tent use of matrix-algebraic notation and placed lengthy proofs and calculations
in appendices.

The best way to read this book may be in a sequential manner, although it
can also be used as a pure reference text. We believe that the book is suitable as

xiii
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the main text for a graduate course on antenna diversity and space-time coding,
as well as for self-studies and as a reference for researchers and engineers. Each
chapter is concluded with a number of problems that can be appropriate exercises
or homework for students if the book is used as a teaching instrument. The level
of difficulty of these problems is quite diverse. We have tried to place the “easier”
exercises first, but such an ordering is always subjective. If the material is used in a
classroom setting, the instructor may wish to cover some topics in more detail than
others. For example, depending on the length of the course, the material placed in
the appendices and many of the proofs can be left for self-studies or as reference
material. We have included a general appendix (Appendix A) with a short review
of matrix algebra and probability theory, that can serve as a good starting point
for readers who need a refresher in these fields. Finally, we should note that
this text and the book Introduction to Space-Time Wireless Communications by
Paulraj, Nabar and Gore (Cambridge University Press, 2003) complement each
other very well in several ways. A topical graduate course can therefore be based
on a combined use of these two books. Researchers interested in the topic of
space-time wireless communications may also benefit most by using both books as
references.
Note to instructors: Our book has a web site (http://publishing.

cambridge.org/resources/0521824567) where we have posted additional ma-
terial for instructors, including an extensive set of overhead slides that summarize
the results in each chapter.

We thank the Swedish Foundation for Strategic Research for supporting most
of our research in the area of this book. We also would like to thank Dr. Girish
Ganesan for his contributions to Section 9.6 and to Appendix B, for several useful
and stimulating discussions, and for proofreading parts of an early draft of the
manuscript. We are grateful to Dr. Philip Meyler of Cambridge University Press
for being the best publishing editor we have ever worked with. Furthermore,
we are also grateful to Prof. Ezio Biglieri, Prof. Helmut Bölcskei, Prof. Robert
Heath, Prof. Mikael Skoglund, Dr. Thomas Svantesson, Prof. Lee Swindlehurst,
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i the imaginary unit (i =

√−1)
Re{·}, Im{·} the real and imaginary parts
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s′ the vector obtained by stacking s̄ and s̃ on top of each other:

s′ =
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s̄T s̃T

]T

log(x) the natural logarithm of x
log2(x) the base-2 logarithm of x
Tr {·} the trace of a matrix
rank{·} the rank of a matrix
| · | the determinant of a matrix, or cardinality of a set
‖ · ‖ Euclidean norm for vectors; Frobenius norm for matrices
A ≥ B the matrix A − B is positive semi-definite
A1/2 the Hermitian square root of A
∝ proportional to
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Chapter 1

INTRODUCTION

The demand for capacity in cellular and wireless local area networks has grown
in a literally explosive manner during the last decade. In particular, the need
for wireless Internet access and multimedia applications require an increase in
information throughput with orders of magnitude compared to the data rates
made available by today’s technology. One major technological breakthrough that
will make this increase in data rate possible is the use of multiple antennas at
the transmitters and receivers in the system. A system with multiple transmit
and receive antennas is often called a multiple-input multiple-output (MIMO)
system. The feasibility of implementing MIMO systems and the associated signal
processing algorithms is enabled by the corresponding increase of computational
power of integrated circuits, which is generally believed to grow with time in an
exponential fashion.

1.1 Why Space-Time Diversity?

Depending on the surrounding environment, a transmitted radio signal usually
propagates through several different paths before it reaches the receiver antenna.
This phenomenon is often referred to as multipath propagation. The radio signal
received by the receiver antenna consists of the superposition of the various mul-
tipaths. If there is no line-of-sight between the transmitter and the receiver, the
attenuation coefficients corresponding to different paths are often assumed to be
independent and identically distributed, in which case the central limit theorem
[Papoulis, 2002, Ch. 7] applies and the resulting path gain can be modelled as a
complex Gaussian random variable (which has a uniformly distributed phase and
a Rayleigh distributed magnitude). In such a situation, the channel is said to be
Rayleigh fading.

Since the propagation environment usually varies with time, the fading is time-
variant and owing to the Rayleigh distribution of the received amplitude, the

1



2 Introduction Chapter 1

channel gain can sometimes be so small that the channel becomes useless. One way
to mitigate this problem is to employ diversity, which amounts to transmitting the
same information over multiple channels which fade independently of each other.
Some common diversity techniques include time diversity and frequency diversity,
where the same information is transmitted at different time instants or in different
frequency bands, as well as antenna diversity, where one exploits the fact that the
fading is (at least partly) independent between different points in space.

One way of exploiting antenna diversity is to equip a communication system
with multiple antennas at the receiver. Doing so usually leads to a considerable
performance gain, both in terms of a better link budget and in terms of toler-
ance to co-channel interference. The signals from the multiple receive antennas
are typically combined in digital hardware, and the so-obtained performance gain
is related to the diversity effect obtained from the independence of the fading of
the signal paths corresponding to the different antennas. Many established com-
munication systems today use receive diversity at the base station. For instance,
a base station in the Global System for Mobile communications (GSM) [Mouly
and Pautet, 1992] typically has two receive antennas. Clearly, a base station
that employs receive diversity can improve the quality of the uplink (from the
mobile to the base station) without adding any cost, size or power consumption
to the mobile. See, for example, [Winters et al., 1994] for a general discussion
on the use of receive diversity in cellular systems and its impacts on the system
capacity.

In recent years it has been realized that many of the benefits as well as a sub-
stantial amount of the performance gain of receive diversity can be reproduced
by using multiple antennas at the transmitter to achieve transmit diversity. The
development of transmit diversity techniques started in the early 1990’s and since
then the interest in the topic has grown in a rapid fashion. In fact, the potential in-
crease in data rates and performance of wireless links offered by transmit diversity
and MIMO technology has proven to be so promising that we can expect MIMO
technology to be a cornerstone of many future wireless communication systems.
The use of transmit diversity at the base stations in a cellular or wireless local
area network has attracted a special interest; this is so primarily because a perfor-
mance increase is possible without adding extra antennas, power consumption or
significant complexity to the mobile. Also, the cost of the extra transmit antenna
at the base station can be shared among all users.
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1.2 Space-Time Coding

Perhaps one of the first forms of transmit diversity was antenna hopping. In a sys-
tem using antenna hopping, two or more transmit antennas are used interchange-
ably to achieve a diversity effect. For instance, in a burst or packet-based system
with coding across the bursts, every other burst can be transmitted via the first
antenna and the remaining bursts through the second antenna. Antenna hopping
attracted some attention during the early 1990’s as a comparatively inexpensive
way of achieving a transmit diversity gain in systems such as GSM. More recently
there has been a strong interest in systematic transmission techniques that can use
multiple transmit antennas in an optimal manner. See [Paulraj and Kailath,
1993], [Wittneben, 1991], [Alamouti, 1998], [Foschini, Jr., 1996], [Yang
and Roy, 1993], [Telatar, 1999], [Raleigh and Cioffi, 1998], [Tarokh
et al., 1998], [Guey et al., 1999] for some articles that are often cited as
pioneering work or that present fundamental contributions. The review papers
[Ottersten, 1996], [Paulraj and Papadias, 1997], [Naguib et al., 2000],
[Liu et al., 2001b], [Liew and Hanzo, 2002] also contain a large number of
relevant references to earlier work (both on space-time coding and antenna array
processing for wireless communications in general). However, despite the rather
large body of literature on space-time coding, the current knowledge on optimal
signal processing and coding for MIMO systems is probably still only the tip of
the iceberg.

Space-time coding finds its applications in cellular communications as well as
in wireless local area networks. Some of the work on space-time coding focuses on
explicitly improving the performance of existing systems (in terms of the proba-
bility of incorrectly detected data packets) by employing extra transmit antennas,
and other research capitalizes on the promises of information theory to use the
extra antennas for increasing the throughput. Speaking in very general terms, the
design of space-time codes amounts to finding a constellation of matrices that sat-
isfy certain optimality criteria. In particular, the construction of space-time coding
schemes is to a large extent a trade-off between the three conflicting goals of main-
taining a simple decoding (i.e., limit the complexity of the receiver), maximizing
the error performance, and maximizing the information rate.

1.3 An Introductory Example

The purpose of this book is to explain the concepts of antenna diversity and space-
time coding in a systematic way. However, before we introduce the necessary
formalism and notation for doing so, we will illustrate the fundamentals of receive
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and transmit diversity by studying a simple example.

1.3.1 One Transmit Antenna and Two Receive Antennas

Let us consider a communication system with one transmit antenna and two receive
antennas (see Figure 1.1), and suppose that a complex symbol s is transmitted. If
the fading is frequency flat, the two received samples can then be written:

y1 = h1s+ e1

y2 = h2s+ e2
(1.3.1)

where h1 and h2 are the channel gains between the transmit antenna and the two
receive antennas, and e1, e2 are mutually uncorrelated noise terms. Suppose that
given y1 and y2, we attempt to recover s by the following linear combination:

ŝ = w∗
1y1 + w∗

2y2 = (w∗
1h1 + w∗

2h2)s + w∗
1e1 + w∗

2e2 (1.3.2)

where w1 and w2 are weights (to be chosen appropriately). The SNR in ŝ is given
by:

SNR =
|w∗
1h1 + w∗

2h2|2
(|w1|2 + |w2|2) · σ2 · E [|s|2] (1.3.3)

where σ2 is the power of the noise. We can choose w1 and w2 that maximize this
SNR. A useful tool towards this end is the Cauchy-Schwarz inequality [Horn and
Johnson, 1985, Th. 5.1.4], the application of which yields:

SNR =
|w∗
1h1 + w∗

2h2|2
(|w1|2 + |w2|2) · σ2 · E [|s|2] ≤ |h1|2 + |h2|2

σ2
· E [|s|2] (1.3.4)

where equality holds whenever w1 and w2 are chosen proportional to h1 and h2:

w1 =α · h1
w2 =α · h2

(1.3.5)

for some (complex) scalar α. The resulting SNR in (1.3.4) is proportional to
|h1|2 + |h2|2. Therefore, loosely speaking, even if one of h1 or h2 is equal to
zero, s can still be detected from ŝ. More precisely, if the fading is Rayleigh,
then |h1|2 + |h2|2 is χ2-distributed, and we can show that the error probability
of detecting s decays as SNR−2

a when SNRa → ∞ (by SNRa here we mean the
average channel SNR). This must be contrasted to the error rate for transmission
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Figure 1.1. A system with one transmit antenna and two receive antennas.

and reception with a single antenna in Rayleigh fading, which typically behaves
as SNR−1

a .
In loose words, the diversity order of a system is the slope of the BER curve if

plotted versus the average SNR on a log-log scale (a more formal definition is given
in Chapter 4). Hence, we can say that the above considered system, provided that
w1 and w2 are chosen optimally, achieves a diversity of order two.

1.3.2 Two Transmit Antennas and One Receive Antenna

Let us now study the “dual” case, namely a system with two transmit antennas
and one receive antenna (see Figure 1.2). At a given time instant, let us transmit
a symbol s, that is pre-weighted with two weights w1 and w2. The received sample
can be written:

y = h1w1s + h2w2s+ e (1.3.6)

where e is a noise sample and h1, h2 are the channel gains. The SNR in y is:

SNR =
|h1w1 + h2w2|2

σ2
· E [|s|2] (1.3.7)

If w1 and w2 are fixed, this SNR has the same statistical distribution (to within
a scaling factor) as |h1|2 (or |h2|2). Therefore, if the weights w1 and w2 are not
allowed to depend on h1 and h2 it is impossible to achieve a diversity of order two.
However, it turns out that if we assume that the transmitter knows the channel,
and w1 and w2 are chosen to be functions of h1 and h2, it is possible to achieve
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RX

TX

Figure 1.2. A system with two transmit antennas and one receive antenna.

an error probability that behaves as SNR−2
a . We defer a deeper discussion of this

aspect to Section 6.1.
We have seen that without channel knowledge at the transmitter, diversity

cannot be achieved. However, if we are allowed to use more than one time interval
for the transmission, we can achieve a diversity of order two rather easily. To
illustrate this, suppose that we use two time intervals to transmit a single symbol
s, where in the first interval only the first antenna is used and where during the
second time interval only the second antenna is used. We get the following two
received samples:

y1 =h1s + e1

y2 =h2s + e2
(1.3.8)

Equation (1.3.8) is of the same form as (1.3.1) and hence the error rate associated
with this method is equal to that for the case where we had one transmit and two
receive antennas. However, the data rate is halved.

This simple example shows that transmit diversity is easy to achieve, if a
sacrifice in information rate is acceptable. Space-time coding is concerned with
the harder and more interesting topic: how can we maximize the transmitted
information rate, at the same time as the error probability is minimized? This book
will present some of the major ideas and results from the last decade’s research on
this topic.
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1.4 Outline of the Book

Our book is organized as follows. We begin in Chapter 2 by introducing a formal
model for the MIMO channel, along with appropriate notation. In Chapter 3, we
study the promises of the MIMO channels from an information theoretical point
of view. Chapter 4 is devoted to the analysis of error probabilities for transmission
over a fading MIMO channel. In Chapter 5, we study a “classical” receive diversity
system with an arbitrary number of receive antennas. This discussion sets, in some
sense, the goal for transmit diversity techniques. In Chapter 6, we go on to discuss
how transmit diversity can be achieved and also review some space-time coding
methods that achieve such diversity. Chapter 7 studies a large and interesting class
of space-time coding methods, namely linear space-time block coding (STBC) for
the case of frequency flat fading. The case of frequency selective fading is treated
in the subsequent Chapter 8. In Chapter 9 we discuss receiver structures for linear
STBC, both for the coherent and the noncoherent case. Finally, Chapters 10 and
11 treat two special topics: space-time coding for transmitters with partial channel
knowledge, and space-time coding in a multiuser environment.

1.5 Problems

1. Prove (1.3.3).

2. In (1.3.5), find the value of α such that

ŝ = s+ e (1.5.1)

where e is a zero-mean noise term. What is the variance of e? Can you
interpret the quantity ŝ?

3. In Section 1.3.2, suppose that the transmitter knows the channel and that it
can use this knowledge to choose w1 and w2 in an “adaptive” fashion. What is
the SNR-optimal choice of w1 and w2 (as a function of h1 and h2)? Prove that
by a proper choice of w1 and w2, we can achieve an error rate that behaves
as SNR−2

a .

4. In Section 1.3.2, can you suggest a method to transmit two symbols during
two time intervals such that transmit diversity is achieved, without knowledge
of h1 and h2 at the transmitter, and without sacrificing the transmission rate?



Chapter 2

THE TIME-INVARIANT LINEAR

MIMO CHANNEL

If we adopt the standard complex baseband representation of narrowband sig-
nals (see Appendix A), the input-output relation associated with a linear and
time-invariant MIMO communication channel can easily be expressed in a matrix-
algebraic framework. In this chapter, we will discuss both the frequency flat and
the frequency-selective case. Models for single-input single-output (SISO), single-
input multiple-output (SIMO) and multiple-input single-output (MISO) channels
follow as special cases.

2.1 The Frequency Flat MIMO Channel

We consider a system where the transmitter has nt antennas, and the receiver
has nr antennas (see Figure 2.1). In the current section we also assume that the
bandwidth of the transmitted signal is so small that no intersymbol interference
(ISI) occurs, or equivalently, that each signal path can be represented by a complex
gain factor. For practical purposes, it is common to model the channel as frequency
flat whenever the bandwidth of the system is smaller than the inverse of the delay
spread of the channel; hence a wideband system operating where the delay spread is
fairly small (for instance, indoors) may sometimes also be considered as frequency
flat. Models for frequency-selective multiantenna channels, i.e., MIMO channels
with non-negligible ISI, will be presented in Section 2.2.

Let hm,n be a complex number corresponding to the channel gain between
transmit antenna n and receive antenna m. If at a certain time instant the complex
signals {x1, . . . , xnt} are transmitted via the nt antennas, respectively, the received
signal at antenna m can be expressed as

ym =
nt∑

n=1

hm,nxn + em (2.1.1)

8
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Figure 2.1. A MIMO channel with nt transmit and nr receive antennas.

where em is a noise term (to be discussed later). The relation (2.1.1) is easily
expressed in a matrix framework. Let x and y be nt and nr vectors containing the
transmitted and received data, respectively. Define the following nr × nt channel
gain matrix:

H =

⎡

⎢
⎣

h1,1 · · · h1,nt

...
...

hnr,1 · · · hnr ,nt

⎤

⎥
⎦ (2.1.2)

Then we have

y = Hx + e (2.1.3)

where e = [e1 · · · enr ]T is a vector of noise samples. If several consecutive vectors
{x1, . . . ,xN} are transmitted, the corresponding received data can be arranged in
a matrix

Y = [y1 · · · yN ] (2.1.4)

and written as follows:

Y = HX + E (2.1.5)

where
X = [x1 · · · xN ] (2.1.6)

and
E = [e1 · · · eN ] (2.1.7)
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Note that vectorization of (2.1.5) yields the following equivalent model:

y =
(
XT ⊗ I

)
h + e (2.1.8)

where y = vec(Y ), h = vec(H) and e = vec(E). This expression will be useful
for performance analysis purposes.

2.1.1 The Noise Term

In this text, the noise vectors {en} will, unless otherwise stated, be assumed to be
spatially white circular Gaussian random variables with zero mean and variance
σ2:

en ∼ NC(0, σ2I) (2.1.9)

Such noise is called additive white Gaussian noise (AWGN).
The Gaussian assumption is customary, as there are at least two strong reasons

for making it. First, Gaussian distributions tend to yield mathematical expres-
sions that are relatively easy to deal with. Second, a Gaussian distribution of a
disturbance term can often be motivated via the central limit theorem.

Unless otherwise stated we will also assume throughout this book that the
noise is temporally white. Although such an assumption is customary, it is clearly
an approximation. In particular, the E term may contain interference consisting
of modulated signals that are not perfectly white.

To summarize, the set of complex Gaussian vectors {en} has the following
statistical properties:

E[eneH
n ] = σ2I

E[eneH
k ] = 0, n �= k

E[eneT
k ] = 0, for all n, k

(2.1.10)

2.1.2 Fading Assumptions

The elements of the matrix H correspond to the (complex) channel gains between
the transmit and receive antennas. For the purpose of assessing and predicting the
performance of a communication system, it is necessary to postulate a statistical
distribution of these elements. This is true to some degree also for receiver design,
in the sense that knowledge of the statistical behavior of H could potentially be
used to improve the performance of the receiver.
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Throughout this book we will assume that the elements of the channel matrix
H are complex Gaussian random variables with zero mean. This assumption is
made to model the fading effects induced by local scattering in the absence of a line-
of-sight component [Stüber, 2001, Ch. 2], [Rappaport, 2002, Ch. 5], [Meyr
et al., 1998, Ch. 11], [Proakis, 2001, Ch. 14]. Consequently the magnitudes of
the channel gains {|hm,n|} have a Rayleigh distribution, or equivalently expressed,
{|hm,n|2} are exponentially distributed. The presence of a line-of-sight component
can be modelled by letting {hm,n} have a Gaussian distribution with a non-zero
mean (this is called Rice fading in the literature), but for notational simplicity
we will not do this in this text. In addition to using the Rayleigh and Rice
distributions, there are many other ways of modeling the statistical behavior of
a fading channel (see, e.g., [Stüber, 2001, Ch. 2] and [Simon and Alouini,
2000, Ch. 2]).

Another commonly made assumption on H is that its elements are statisti-
cally independent of one another. Although we will make this assumption in this
book unless otherwise explicitly stated, it is usually a rough approximation. That
{hm,n} are not independent in practice can easily be understood intuitively: if two
electromagnetic waves, originating from two different antennas, are reflected by
the same object, the propagation coefficients associated with each of these waves
will be correlated. In general, the elements of H are correlated by an amount that
depends on the propagation environment as well as the polarization of the antenna
elements and the spacing between them [Ertel et al., 1998].

One possible model for H that takes the fading correlation into account splits
the fading correlation into two independent components called receive correla-
tion and transmit correlation, respectively (see, e.g., [Kermoal et al., 2002],
[Gesbert et al., 2002]). This amounts to modeling H as follows:

H = R1/2
r HwR

1/2
t (2.1.11)

where Hw is a matrix whose elements are Gaussian and independent with unity
variance and where (·)1/2 stands for the Hermitian square root of a matrix. The
matrix Rr determines the correlation between the rows of H, and is used to model
the correlation between the receive antennas; note that this correlation is the same
regardless of which transmit antenna that is considered. The matrix Rt is called
transmit correlation matrix and models the covariance of the columns of H in a
corresponding manner; according to the model (2.1.11), this correlation is equal
for all receive antennas under consideration. Let hw � vec(Hw). Then

h � vec(H) =
(
R

T/2
t ⊗ R1/2

r

)
hw (2.1.12)
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and hence

h ∼ NC

(
0,RT

t ⊗ Rr

)
(2.1.13)

Of course, one could envision the use of a channel model with a more general
covariance structure than that in (2.1.11) but such a matrix would lose the inter-
pretation in terms of a separate transmit and receive correlation.

The correlation coefficients in Rr and Rt in (2.1.11) can be obtained ana-
lytically by making the assumption that the transmitter and receiver are sur-
rounded by a cluster of scatterers with a certain spatial distribution (see, e.g.,
[Zetterberg, 1996]). The corresponding correlation coefficients will in general
decrease as the size of the scatterer cluster (relative to the distance between the
transmitter and receiver) increases. If both the transmitter and the receiver are
located in the middle of one large and dense isotropic distribution of scatterers,
the correlation coefficients can become virtually zero.

The relations between the scattering environment and the properties of Rt and
Rr are illustrated in Figure 2.2. In Figure 2.2(a), both the transmitter and the
receiver are located within a homogenous field of scatterers and we can expect
both Rr and Rt to be proportional to identity matrices. In Figure 2.2(b), only
the transmitter is located within a field of scatterers, and from the receiver this
field is seen within a relatively small angle. The receiver is not surrounded by
any significant amount of scatterers. In this case, we can expect Rr to have a
low effective rank (in other words, the ratio between the largest eigenvalue and
the smallest eigenvalues is fairly large), whereas Rt should be proportional to an
identity matrix. Finally, Figure 2.2(c) illustrates the opposite case in which only
the receiver is located within a scatterer field that is visible within a small angle
from the transmitter (which is not surrounded by local scatterers). In this case,
Rr should be proportional to an identity matrix whereas Rt may be of low rank.
This last case can occur, for instance, in the downlink in a cellular communication
system when the base station antennas are located on the top of a radio mast and
the mobile user is in an urban area.

In practice, the amount of correlation between the elements of H can be as-
sessed by measurements. A recent experimental study [Kyritsi and Cox, 2001]
considers an indoor scenario with the transmitter and receiver situated in two dif-
ferent rooms, and reports correlation coefficients with magnitudes between 0.25
and 0.75, depending on the polarization and the distance between the transmit-
ter and receiver. Other related results have been reported in [Swindlehurst
et al., 2001], [Stridh and Ottersten, 2000], [Molisch et al., 2002],
[Yu et al., 2001]. Also note that the model in (2.1.11) is only one possible
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cient

Figure 2.2. Illustration of local scattering.

way of modeling the correlation between the elements of H . See, for example,
[Paulraj et al., 2003], [Durgin, 2002], [Ertel et al., 1998], [Gesbert
et al., 2002], [Zetterberg, 1996], [Yu and Ottersten, 2002], [Correia,
2001] for a more detailed discussion of propagation modeling for wireless MIMO
channels, and [Bliss et al., 2002] for an analysis of how the statistics of H
influence quantities such as channel capacity. The case of polarization diversity is
studied in, for example, [Kyritsi et al., 2002], [Nabar et al., 2002] and the
references therein.

As we will show later in the text, the transmit and receive correlation can affect
the achievable system performance heavily. The ideal case is when both Rr and
Rt are proportional to identity matrices, whereas in the case when both Rr and
Rt have rank one, the achievable radio link performance will effectively be reduced
to that of a conventional SISO system. This is easy to understand intuitively: if
the magnitudes of all propagation coefficients {|hm,n|} fade independently the risk
that all will be in a deep fade at the same time is significantly reduced compared
to the case where they fade in a correlated fashion. We illustrate these facts in
the following example.

Example 2.1: Correlated and Uncorrelated Fading.
Consider a system with one transmit antenna and two receive antennas. Let the
two corresponding channel gains be denoted by h1 and h2, and assume that they
are complex Gaussian random variables as above. In Figure 2.3 we illustrate the
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received signal strength in the two antennas, viz., |h1|2 and |h2|2, as well as the total
received signal strength |h1|2+|h2|2 as a function of time. Figures 2.3(a) and 2.3(b)
show the result in the case that h1 and h2 are independent. Clearly the probability
that the signal level drops below a certain threshold is lower for the sum of the
squared channel gains than for each of them independently. This illustrates the
concept of diversity – a signal transmitted over two independently fading channels
is more likely to be correctly detected than the same signal transmitted over a single
fading channel. Figures 2.3(c) and 2.3(d) show the corresponding results when h1
and h2 are correlated with a correlation coefficient of 0.9. In this case, the risk
for a deep fade in |h1|2 + |h2|2 is also decreased compared with the corresponding
risk for |h1|2 or |h2|2, but the diversity effect is not as pronounced as in the case of
independently fading channel gains. For comparison, the average signal strengths
are also shown in each figure as a horizontal line.

2.2 The Frequency-Selective MIMO Channel

A frequency-selective multipath MIMO channel can be modeled as a causal
continuous-time linear system with an impulse response Hcont(t), 0 ≤ t < ∞,
consisting of a (virtually infinite) number of impulses with coefficient matrices
{Ak} and relative timing {τk} (see, e.g., [Rappaport, 2002, Chap. 5] for a gen-
eral discussion of modeling of multipath channels, and [Paulraj et al., 2003]
for a discussion of MIMO channel modeling):

Hcont(t) =
∑

k

Akδ(t − τk) (2.2.1)

(As all quantities in this text will later be discrete-time, we emphasize the
continuous-time nature of Hcont(t) by the subscript (·)cont.) The transfer func-
tion of the channel is:

Hcont(ω) =
∫ ∞

−∞
Hcont(t)e−iωtdt (2.2.2)

To obtain a model suitable for analysis, it is convenient to use a sampled rep-
resentation; also, envisioning a digital implementation of receiver algorithms, a
discrete-time model is necessary. Let τ be the sampling period, and suppose that
the transmitted signal is ideally bandlimited to the Nyquist frequency 1/τ ; hence
we can assume that the channel is bandlimited to 1/τ as well. Then assuming that
the sampling jitter is chosen such that a sample is taken at t = 0, the sampled
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(a) Plot of |h1|2 (solid) and |h2|2 (dotted).
Here h1 and h2 are uncorrelated.
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(b) Plot of |h1|2 + |h2|2. Here h1 and h2 are
uncorrelated.
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(c) Plot of |h1|2 (solid) and |h2|2 (dashed).
The correlation between h1 and h2 is 0.9.
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(d) Plot of |h1|2 + |h2|2. The correlation
between h1 and h2 is 0.9.

Figure 2.3. Illustration of fading and diversity. In all figures, the horizontal line shows the time
average.
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impulse response of the channel becomes:

H(nτ) =
∫ ∞

−∞
Hcont(nτ − t) · sin(πt/τ)

πt/τ
dt

=
∫ ∞

−∞

(
∑

k

Akδ(nτ − τk − t)

)

· sin(πt/τ)
πt/τ

dt

=
∑

k

Ak
sin (π(n − τk/τ))

π(n − τk/τ)

(2.2.3)

where in the first inequality we used the assumption on the ideal bandlimitation
of the channel, the second equality follows by using (2.2.1) and the last equality
is straightforward. Note that for frequency flat fading (i.e., when no intersymbol
interference is present), we have Hcont(t) ≈ A0 · δ(t), where A0 · δ(t) is the (only)
term in the sum (2.2.1). In this case, the transfer function Hcont(ω) in (2.2.2) is
approximately independent of ω within the frequency band of interest.

In general the sampled impulse response H(nτ) in (2.2.3) has an infinite length,
but we will truncate it to an “effective length,” i.e., a number of taps which contain
most of the power. We will also assume that all signals are sampled at the symbol
rate, i.e., that τ is equal to the symbol period. Letting L + 1 be the number of
significant taps of the channel, we arrive at the following causal matrix-valued FIR
channel model:

H(z−1) =
L∑

l=0

H lz
−l (2.2.4)

where {H l} are the nr × nt MIMO channel matrices corresponding to the time-
delays l = 0, . . . , L. Note that L can be interpreted as the “delay-spread” of the
channel (in units of symbol intervals); also, L = 0 corresponds to a frequency-flat
or an ISI-free channel. The transfer function associated with H(z−1) is:

H(ω) =
L∑

l=0

H le
−iωl (2.2.5)

2.2.1 Block Transmission

Since the channel has memory, sequentially transmitted symbols will interfere with
each other at the receiver, and therefore we need to consider a sequence, or block,
of symbols {s(0), s(1), . . .}, instead of a single symbol at a time as before. In
general, we will assume that the transmitted sequence is preceded by a preamble
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(a) Transmission of blocks with a separating guard interval.
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(b) Continuous transmission of blocks; the preamble and postamble of consecutive blocks
coincide.

Figure 2.4. Illustration of block-transmission.

and followed by a postamble. The preamble and postamble play the important
role of preventing subsequent blocks from interfering with each other and, as we
will see later in the book, they can also be essential for providing diversity. If
several blocks follow each other, the postamble of one block may also function as
the preamble of the following block, and so on. This is the case for example in
some wireless local area network standards [van Nee et al., 1999]. However,
it is also possible that the blocks are separated with a guard interval; this is the
case for instance in the GSM cellular phone system [Mouly and Pautet, 1992].
These two possibilities are illustrated in Figure 2.4.

Let us consider the transmission of a given block (see Figure 2.5). Assume
that the preamble and postamble are of the length Npre and Npost, respectively.
Note that unless there is an additional guard interval between the blocks (as in Fig-
ure 2.4(a)), we must have Npre ≥ L to prevent the data (or postamble) of a preced-
ing burst from interfering with the data part of the block under consideration. We
let the preamble of the block under consideration be transmitted during the time
intervals n = −Npre, . . . ,−1, we let the data be transmitted at n = 0, . . . , N0 − 1
and we assume that the postamble is transmitted at n = N0, . . . , N0+Npost−1. We
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Figure 2.5. Definition of the time index for the block transmission under consideration.

denote by {x(n)} for n = −Npre, . . . , N0 + Npost − 1 the sequence of transmitted
nt-vectors obtained by concatenating the preamble, the transmitted data corre-
sponding to {s(n)}, and the postamble. Different choices of the mapping between
{s(n)} and {x(n)} will be discussed later in the text, but in the special case of
one transmit antenna (nt = 1), x(n) becomes a scalar x(n) and in that case no
transmit encoding is necessary so we can simply set x(n) = s(n).

The received signal is well-defined for n = L − Npre, . . . , N0 + Npost − 1, but it
depends on the transmitted data only for n = 0, . . . , N0 +L− 1; in the discussion
we assume that Npost ≤ L. The samples n = 0, . . . , N0+L− 1 that depend on the
data can be written as:

y(n) =
L∑

l=0

H lx(n − l) + e(n) = H(z−1)x(n) + e(n) (2.2.6)

where e(n) is a noise vector. Note that parts of the signal received during the
preamble can in general depend on the data and the postamble in the previous
burst. Also note that the received samples during the preamble and postamble,
which do not depend on the unknown data, can be used for other tasks such as
channel estimation.

2.2.2 Matrix Formulations

We can rewrite the model (2.2.6) to express the received signal of the form (2.1.3)
as follows. Let

G =

⎡

⎢⎢
⎢⎢
⎣

HL HL−1 · · · H1 H0 0 · · · 0

0 HL
. . . . . . H0

. . .
...

...
. . . . . . . . . 0

0 · · · 0 HL HL−1 · · · H1 H0

⎤

⎥⎥
⎥⎥
⎦

(2.2.7)
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and

x =
[
xT (−L) · · · xT (N0 + L − 1)

]T

y =
[
yT (0) · · · yT (N0 + L − 1)

]T

e =
[
eT (0) · · · eT (N0 + L − 1)

]T

(2.2.8)

Then we have that:
y = Gx + e (2.2.9)

Although (2.2.9) has the same form as the relation (2.1.3) that describes the input-
output relation associated with a flat MIMO channel, the matrix G in (2.2.9) has
a very special structure, as opposed to the matrix H in Section 2.1. However, we
can rearrange the model (2.2.9) to obtain an expression of the form (2.1.8), where
h is an unstructured vector, and hence flat and frequency-selective channels can
be analyzed in a common matrix-algebraic framework. First note that

[
y(0) · · · y(N0 + L − 1)

]

=
[
H0 · · · HL

]
X +

[
e(0) · · · e(N0 + L − 1)

] (2.2.10)

where X is a block-Toeplitz matrix built from the transmitted data {x(n)}N0+L−1
n=−L

according to:

X =

⎡

⎢
⎢⎢
⎢
⎣

x(0) · · · · · · · · · x(N0 + L − 1)

x(−1) . . . x(N0 + L − 2)
...

. . .
...

x(−L) · · · · · · x(0) · · · x(N0 − 1)

⎤

⎥
⎥⎥
⎥
⎦

(2.2.11)

If we let

h = vec
([

H0 · · · HL

])
(2.2.12)

then by vectorizing both sides of (2.2.10) we find that:

y =
(
XT ⊗ Inr

)
h + e (2.2.13)

which has the form (2.1.8).
Although the FIR-filtering representation in (2.2.6) may be easier to interpret

intuitively than (2.2.13), the latter formulation will be more useful for performance
analysis.
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2.3 Summary and Discussion

In this chapter we have introduced a unified matrix-algebraic framework for the
MIMO propagation channel. Relying on the standard complex baseband represen-
tation of narrowband signals, we found in Section 2.1 that a frequency flat MIMO
channel can be described by a matrix equation of the form Y = HX +E (where
all quantities are defined in Section 2.1). For frequency-selective channels, we mod-
eled the channel via a symbol-spaced tapped-delay-line with coefficient matrices
{H l}Ll=0 where L + 1 is the number of taps (see Section 2.2). Finally, we found
that the input-output relation associated with both frequency flat and frequency-
selective channels can be cast in the form y = (XT ⊗I)h+e where y is a vector of
received data, h is a vector of the channel, X is a (structured) matrix containing
transmitted data and e is noise. While the results of this chapter will be used
in the entire remaining text, the latter general model will be particularly useful
in Chapters 4, 5 and 8 when we analyze the error performance of transmission
schemes for both flat and frequency-selective channels.

While the model for flat MIMO channels does not involve any significant ap-
proximation, concerning frequency-selective channels we should stress that the
models used in Section 2.2 are idealized descriptions of reality. In particular, a
sampled channel impulse response has usually an infinite length even when the
continuous-time delay spread is finite. However, in practice some of the channel
taps may be very small; hence for analysis purposes it may make sense to let L
be the effective length of the channel, i.e., the number of significant taps in the
channel impulse response. This means that the effective rank of E[hhH ] will be
(at most) equal to nrnt(L + 1). Also, note that in some receivers it is common
practice to use an oversampled version of the received signal. In this case, the
received signal can still be modelled as in (2.2.6), but using a FIR filter of length
L̂ > L where L is the length of the channel (sampled at symbol rate). The same
may be true in the presence of symbol synchronization errors, in which case it
may be necessary to use a longer FIR filter (L̂ > L) to accurately represent the
propagation channel. However, in both these cases some elements of the vector
h will be highly correlated so that they have a rank deficient covariance matrix;
therefore the rank of E[hhH ] is strictly less than nrnt(L̂+1). More details on the
transition from continuous to discrete time can be found in [Meyr et al., 1998];
a discussion on sufficiency of the statistics obtained by sampling a continuous-time
model, in the context of maximum-likelihood equalization, can also be found in
[Chugg and Polydoros, 1996].
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2.4 Problems

1. Give some examples of practical communication systems where the propaga-
tion channel is

(a) frequency flat

(b) frequency-selective

(c) time-invariant

(d) time-variant

2. Discuss some tradeoffs involved in the choice of the length N0 of the data
block, and the lengths Npre and Npost of the preambles and postambles (see
Figure 2.4).

3. Discuss the validity of the assumptions in Section 2.1.1. Can you give an
example of a situation where E is not statistically white? Can you give an
example of a case when it is not Gaussian?

4. Discuss the correlation between the matrices H l in (2.2.4). Are they inde-
pendent in general? If not, what factors influence the correlation between
them?

5. Study the scenarios in Figure 2.2.

(a) Consider two antennas, spaced several wavelengths apart, located in the
middle of an area with uniformly distributed scatterers (this is the situa-
tion for both the transmitter and receiver in Figure 2.2(a)). Use a central
limit theorem-type of reasoning to argue that the fading associated with
the two antennas is (practically) independent.

(b) Consider two antennas located in free space, and suppose that a signal
impinges from a direction in space with a very small angular spread (this
is the situation for the receiver in Figure 2.2(b) and for the transmitter
in Figure 2.2(c)). Explain why we can expect the fading associated with
these two antennas to be highly correlated.

6. Give an example of a covariance matrix R that does not have the Kronecker
structure in (2.1.13).



Chapter 3

MIMO INFORMATION THEORY

The primary goal of this chapter is to review a few basic concepts from information
theory and see how these can be applied to the analysis of a MIMO system. We
will obtain expressions for the capacity of a MIMO system, and study how this
capacity behaves in certain situations. Such capacity results are important because
they express bounds on the maximal achievable data rate, and they will also be
used for the analysis of different transmission schemes later in the text. While
many results in this chapter are classical, some of them are more recent. Our
intention is to offer a brief, but as consistent as possible, treatment of the topic.
Some of the material in the present chapter is rather mathematical; the reader
may skim through this chapter and return to its details when needed.

3.1 Entropy and Mutual Information

Let x be a random variable with a discrete probability mass function px(x). Then
the quantity

H(x) = −Ex

[
log2

(
px(x)

)]
= −

∑

k

log2
(
px(xk)

)
px(xk) (3.1.1)

is called the entropy of x. The entropy is essentially a measure of how many bits of
information are needed, on the average, to convey the information contained in x
provided that an optimal source coding algorithm is used [Cover and Thomas,
1991, Ch. 5]. In a similar way, for a continuous random variable (in general, a
random vector), we can define:

H(x) = −Ex

[
log2

(
px(x)

)]
= −

∫
dx px(x) log2

(
px(x)

)
(3.1.2)

For continuous probability distributions, the quantity H(x) is often called the
differential entropy in the information theory literature.

22
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If x is a real-valued Gaussian random vector of length n:

x ∼ N(µ,P ) (3.1.3)

then we leave as an exercise to the reader to verify that

H(x) = −
∫

dx
exp

( − 1
2x

TP−1x
)

(2π)n/2 · |P |1/2 log2

(
exp

( − 1
2x

TP−1x
)

(2π)n/2 · |P |1/2
)

=
n

2
· log2(2πe) +

1
2
log2 |P |

(3.1.4)

Note that the entropy H(x) in (3.1.4) does not depend on µ. In the same way, if
x is a circular Gaussian random vector (see Appendix A.3) of length n:

x ∼ NC(µ,P ) (3.1.5)

then

H(x) = n log2(eπ) + log2 |P | (3.1.6)

(independent of µ).
Gaussian vectors have a very special property: among all random vectors x

with zero mean and covariance matrix P , the entropy H(x) is maximized if x is
Gaussian. We state this classical result in the following theorem.

Theorem 3.1: Entropy-maximizing property of a Gaussian random variable.
Let x be a real-valued random vector with

E[x] = 0

E[xxT ] = P
(3.1.7)

Then H(x) is maximized if x ∼ N(0,P ).

Proof: This result is well-known (see, e.g., [Cover and Thomas, 1991,
Th. 9.6.5] and [Telatar, 1999]). For completeness, we present a short proof
in Section 3.8.

The above result extends directly to complex random vectors, in which case the
entropy is maximized for a circular Gaussian vector.



24 MIMO Information Theory Chapter 3

The entropy can be evaluated conditioned on another variable y, in which case
we write H(x|y). The so-obtained quantity, which is called conditional entropy,
is defined as:

H(x|y) = −E
[
log2

(
p(x|y))] (3.1.8)

For two random vectors x and y, we can associate a quantity called mutual infor-
mation defined as follows:

M(y,x) = H(y)− H(y|x) (3.1.9)

The mutual information is essentially a measure of how much information about
the random vector y is contained in the vector x.

The concept of mutual information is particularly relevant in the context of
the following linear model:

y = Hx + e (3.1.10)

where y, x and e are random vectors of length n, m, and n, respectively. Let us
first assume that all quantities in (3.1.10) are real-valued, and that e is zero-mean
Gaussian:

e ∼ N(0, σ2 · I) (3.1.11)

Then by (3.1.4):

Mreal(y,x|H) = H(y|H)− H(y|x,H)

= H(y|H)− n

2
· log2(2πe) − 1

2
log2 |σ2I|

(3.1.12)

Clearly, if x has zero mean and covariance matrix P , then y has zero mean and
covariance matrix HPHT +σ2I. By Theorem 3.1, it follows that among all zero-
mean vectors x with covariance matrix P , the mutual information in (3.1.12) is
maximized when y is Gaussian, which in turn holds if x is Gaussian. For such a
Gaussian choice of x, we have that (cf. (3.1.4)):

H(y|H) =
n

2
· log2(2πe) +

1
2
log2 |σ2I + HPHT | (3.1.13)

and consequently

Mreal(y,x|H) =
1
2
log2 |σ2I + HPHT | − 1

2
log2 |σ2I|

=
1
2
log2

∣
∣
∣∣I +

1
σ2

HPHT

∣
∣
∣∣

(3.1.14)
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If instead all quantities in (3.1.10) are complex-valued, and e is circular Gaus-
sian:

e ∼ NC(0, σ2 · I) (3.1.15)

then we can show that

Mcomplex(y,x|H) = log2

∣
∣∣
∣I +

1
σ2

HPHH

∣
∣∣
∣ (3.1.16)

3.2 Capacity of the MIMO Channel

In the previous section we have outlined the steps that lead to the following central
result.

Theorem 3.2: Capacity of a constant MIMO channel with Gaussian noise.
For a givenH, the Shannon capacity of a MIMO channel is given by the maximum
mutual information between the received vectors {yn} and the transmitted vectors
{xn}. Among all zero-mean vectors {x} with covariance matrix P , the largest
mutual information is achieved when {x} is Gaussian. Then the total transmission
power is equal to P = Tr {P } and the resulting channel capacity is equal to:

C(H) = B · log2
∣
∣∣I +

1
σ2

HP HH
∣
∣∣ (3.2.1)

where B is the bandwidth (in Hz) of the channel.

Proof: From Shannon’s information theory [Cover and Thomas, 1991] it follows
that the capacity of a channel x → y is equal to B · M(y,x). Since (3.1.10) is
essentially equivalent to the linear MIMO channel model model (2.1.3) the result
follows. More rigorous arguments can be found in [Telatar, 1999].

The channel capacity C(H) in Theorem 3.2 gives a bound on the maximum
achievable information rate (in bits/second) for a constant channel. This bound
is achievable only under certain (quite restrictive) conditions. For instance, a rate
of C(H) is not achievable unless the length of the data block under consideration
goes to infinity [Cover and Thomas, 1991].

Note that for a SISO system that transmits with power P , for which the channel
gain is constant and equal to h (in the SISO case, the matrix H reduces to a scalar
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h), and which is affected by AWGN noise such that the SNR is equal to P |h|2/σ2,
the channel capacity in Theorem 3.2 simplifies to:

C(h) = B · log2
(
1 +

P

σ2
|h|2

)
(3.2.2)

which is the classical Shannon capacity.
The next two examples show that the expression (3.2.1) can be specialized to

many situations.

Example 3.1: Capacity of parallel and independent channels.
If H and P are diagonal matrices, then the system is equivalent to nt parallel and
independent SISO systems. The aggregate capacity of nt such systems is equal to:

C(H) = B · log2
∣
∣∣I +

1
σ2

HPHH
∣
∣∣

= B ·
nt∑

n=1

log2

(
1 +

|[H ]n,n|2[P ]n,n
σ2

) (3.2.3)

Example 3.2: Capacity of a frequency-selective channel.
If {H l} is the impulse response of a frequency-selective MIMO channel, its chan-
nel capacity is obtained by integrating (3.2.1) (omitting the factor B) over the
frequency band Ω that is available for transmission:

C
(
H(z−1)

)
=

∫

Ω
dω log2

∣∣
∣I +

1
σ2

H(ω)P (ω)HH(ω)
∣∣
∣ (3.2.4)

where H(ω) is the transfer function of the channel defined in (2.2.5):

H(ω) =
L∑

l=0

H le
−iωl (3.2.5)

and P (ω) is the matrix spectral density function of the transmitted vectors.

The channel capacity is a quantity that is not always easy to interpret, and
which does not express the entire truth about the achievable throughput. How-
ever, it is a quantity that is often relevant to study in order to gain insight into the
possibilities and the fundamental limitations of a system. In particular, since the
channel capacity of an AWGN SISO channel is achievable to within less than one
dB using state-of-the-art coding and signal processing [Sklar, 1997], the corre-
sponding MIMO capacity figure will often provide an indication of the ultimately
achievable throughput.
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3.3 Channel Capacity for Informed Transmitters

If the channel H is known to the transmitter, the transmit correlation matrix
P can be chosen to maximize the channel capacity for a given realization of the
channel. The main tool for performing this maximization is the following result,
which is commonly referred to as “water-filling,” and the resulting maximal chan-
nel capacity CIT(H) is called the informed transmitter (IT) capacity. Since this
result is also used in other contexts than maximizing the mutual information, we
state it in a general form as follows.

Theorem 3.3: Water-filling.
Let Q and P be positive semi-definite matrices of dimension m×m and define the
following function:

f(P ) = |I + PQ| (3.3.1)

Assume that Q has m+ ≤ m nonzero eigenvalues and let

Q1/2 = UΓUH =
[
U+ U0

]
[
Γ+ 0
0 0

] [
UH
+

UH
0

]
(3.3.2)

be the eigen-decomposition of the Hermitian square root of Q. Here U and Γ are of
dimension m×m, U+ is of dimension m×m+, U0 is of dimension m×(m−m+)
and

Γ+ =

⎡

⎢⎢
⎢⎢
⎣

γ1 0 · · · 0

0 γ2
. . .

...
...
. . . . . . 0

0 · · · 0 γm+

⎤

⎥⎥
⎥⎥
⎦

(3.3.3)

is an m+ × m+ diagonal matrix such that γ1 ≥ · · · ≥ γm+ .
Consider the maximization of (3.3.1) with respect to P for a fixed Q, and

subject to the constraint that Tr {P } ≤ P . Then it holds that

f(P ) ≤ |Γ2−| ·
(Tr

{
Γ−2
−

}
+ P

m−

)m−
(3.3.4)

with equality if P is chosen as follows:

P = UΦUH (3.3.5)



28 MIMO Information Theory Chapter 3

where

Γ− =

⎡

⎢⎢
⎢⎢
⎣

γ1 0 · · · 0

0 γ2
. . .

...
...
. . . . . . 0

0 · · · 0 γm−

⎤

⎥⎥
⎥⎥
⎦

(3.3.6)

and

Φ =diag{φ1, . . . , φm− , 0, . . . , 0} (3.3.7)

Also,

φm =

⎧
⎨

⎩

Tr{Γ−2
− }+P

m− − 1
γ2

m
,

Tr{Γ−2
− }+P

m− > 1
γ2

m

0, otherwise
(3.3.8)

for m = 1, . . . ,m−. The number of nonzero φm is equal to m− and is defined
implicitly via (3.3.8).

Proof: This result is well-known from information theory (see, e.g., [Cover and
Thomas, 1991, Th. 13.3.3] using a slightly different formulation). For complete-
ness, we outline a proof in Section 3.8.

By applying the theorem with

Q =
1
σ2

HHH (3.3.9)

(recall the fact that |I+AB| = |I+BA| for any matrices A and B of compatible
dimension) we can easily compute the transmit correlation matrix P that maxi-
mizes the mutual information between the transmitter and receiver for a given H .
According to Theorem 3.3, the available transmit power should be distributed on
the dominant eigenvectors of the MIMO channel. Only a subset of the eigenvec-
tors is used; depending on the SNR, between one and all of the eigen-modes of the
channel are exploited.

3.4 Ergodic Channel Capacity

For a fading channel, the matrix H is a random quantity and hence the associated
channel capacity C(H) is also a random variable. The average of (3.2.1) over the
distribution of H :

B · EH

[
log2

∣∣
∣I +

1
σ2

HP HH
∣∣
∣
]

(3.4.1)
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is sometimes called average capacity, or ergodic capacity and it cannot be achieved
unless coding is employed across an infinite number of independently fading blocks.
We can choose P to maximize the average capacity (subject to a power constraint).
The following classical theorem, which we present without proof, shows that the
maximal ergodic capacity is achieved when P is proportional to an identity matrix.

Theorem 3.4: Maximizing the ergodic capacity.
Let H be a Gaussian random matrix with independent and identically distributed
elements. Then the average capacity

B · EH

[
log2

∣
∣∣I +

1
σ2

HP HH
∣
∣∣
]

(3.4.2)

is maximized subject to the power constraint

Tr {P } ≤ P (3.4.3)

when
P =

P

nt
I (3.4.4)

Proof: See [Telatar, 1999].

Theorem 3.4 shows that to maximize the average capacity, the antennas should
transmit uncorrelated streams with the same average power. This observation is
intuitively appealing. In a more stringent setting, it also led to the concept of
unitary space-time modulation [Hochwald and Marzetta, 2000], [Hochwald
et al., 2000].

With P chosen according to (3.4.4), the resulting capacity (for a fixed H) is
given by the formula:

CUT(H) = B · log2
∣
∣∣I +

P

ntσ2
HHH

∣
∣∣ (3.4.5)

The quantity CUT(H) in (3.4.5) is relevant in the case when the transmitter does
not have channel knowledge (and hence chooses P according to (3.4.4)) and it
is called the uninformed-transmitter channel capacity in this text. We stress the
difference between the informed capacity CIT(H) and the uninformed capacity
CUT(H). The former is the capacity (for a fixed H) obtained by using channel
knowledge at the transmitter to optimize P via Theorem 3.3, whereas the latter
is the capacity that results if P is chosen according to (3.4.4).
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Example 3.3: Average MIMO channel capacity.
Assume that H has independent and Gaussian elements with unit variance and
that the total (accumulated over all antennas) transmit power is equal to P = 1.
The noise is white and Gaussian and has a power of σ2 per antenna. Figure 3.1
shows the average capacity (i.e., E[C(H)] using P = (1/nt)I) of the system,
obtained by numerical averaging over the distribution of the channel, for some
different values of nr and nt. From this figure, we can see that the gain in capacity
obtained by employing an extra receive antenna is around 3 dB relative to a SISO
system (nt = 1,nr = 1); this gain can be viewed as a consequence of the fact
that the extra receive antenna effectively doubles the received power. The gain
of a system with (nt = 2,nr = 1) relative to the SISO system is small; as far
as the average capacity is concerned there is practically no benefit in adding an
extra transmit antenna to the SISO system. Finally, the capacity of a system with
nt = 2, nr = 2 is around a factor two higher than that of the SISO system, which
is a promising observation.

3.5 The Ratio Between IT and UT Channel Capacities

We can expect that the IT capacity given by Theorem 3.3 will be higher than the
UT capacity (3.4.5), because an informed transmitter can optimize the transmit
covariance matrix for a given channel. This is indeed the case, yet the IT capacity
converges to the UT capacity as the SNR grows without bound. The following
result (from [Bliss et al., 2002]) quantifies the relation between CIT(H) and
CUT(H).

Theorem 3.5: The Ratio between UT and IT capacities.

(i) The informed and uninformed capacities coincide for high SNR:

CIT(H)
CUT(H)

→ 1 (3.5.1)

as P/σ2 → ∞.
(ii) For low SNR, the ratio between the IT and UT capacities behaves as:

CIT(H)
CUT(H)

≈ nt · λmax(HHH)
Tr

{
HHH

} (3.5.2)
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Figure 3.1. Average capacity for a system with one and two receive and transmit antennas, as
a function of the SNR. The SNR here is equal to P/σ2, where P is the total transmit power and
σ2 is the noise power per antenna.

Proof: To show part (i), let Γ+, and m− be as defined in Theorem 3.3, when
applied with Q = HHH/σ2. Note that

CIT(H)
CUT(H)

→
log2

(

|Γ+| ·
(Tr{Γ−2

+ }+P

m−

)m−
)

log2
∣
∣∣I + P

nt
Γ+

∣
∣∣

→
m− · log2

(
P
m−

)
+ log2 |Γ+|

m− · log2
(

P
nt

)
+ log2 |Γ+|

→ 1

(3.5.3)

when P/σ2 → ∞.
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To prove part (ii) note that for low SNR, all transmission power will be dis-
tributed on the dominant eigenvector of HHH . Therefore, the channel essentially
reduces to a SISO channel with gain λmax(HHH). We get:

CIT(H)
CUT(H)

→
log2

(
1 + P

σ2 · λmax(HHH)
)

log2
∣∣
∣I + P

ntσ2 HHH
∣∣
∣

≈ nt · λmax(HHH)
Tr

{
HHH

}

(3.5.4)

for small P/σ2. In the last step, we have used the fact that for a Hermitian matrix
X with small eigenvalues,

log |I + X| ≈ Tr {X} (3.5.5)

Theorem 3.5 shows that channel state information at the transmitter is more
important for low SNR than for high SNR. Clearly, in the low-SNR regime, the
difference between the UT and IT capacities is determined by the eigenvalue spread
of HHH . For systems with a single receive antenna, this observation has an
appealing interpretation, as explained below.

Example 3.4: IT and UT capacities for MISO systems.
For a system with nt transmit antennas and nr = 1 receive antenna, H becomes
a row vector and hence HHH is a scalar. Thus we have that

nt · λmax(HHH)
Tr

{
HHH

} = nt (3.5.6)

Therefore, for such a system, the asymptotic (for low SNR) ratio between the IT
and UT channel capacities is equal to nt. Since for low values of SNR

α · log2
∣∣
∣I +

P

ntσ2
HHH

∣∣
∣ ≈ log2

∣∣
∣I +

α · P
ntσ2

HHH
∣∣
∣ (3.5.7)

the capacity of an informed transmitter can be reached by an uninformed trans-
mitter only if the transmission power is increased by a factor nt. This factor of nt

is closely related to what we will call “array gain” in Chapter 6.
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3.6 Outage Capacity

Since the channel capacity is a random variable, it is meaningful to consider its
statistical distribution. A particularly useful measure of its statistical behavior is
the so-called outage capacity. The α-outage capacity Cα is the capacity in (3.2.1)
that can be surpassed with probability α:

P (C(H) > Cα) = α (3.6.1)

The outage capacity is often a more relevant measure than the average ca-
pacity, especially for systems based on packet, or burst, transmission where the
performance is specified in terms of a maximal frame-error-rate (FER), and where
the channel is assumed to remain constant during the transmission of a packet.
Note that the outage capacity cannot be achieved unless the length of the blocks
(during which the channel remains constant) goes to infinity. By imposing delay
constraints it is possible to define measures such as delay-limited capacity [Caire
et al., 1999, Def. 5], which is a quantity that is relevant yet somewhat outside
the scope of our discussion.

Example 3.5: 99%-Outage MIMO channel capacity.
Figure 3.2 shows the 99%-outage channel capacity (3.6.1), for the same systems as
in Example 3.3. This capacity measure is relevant for obtaining a bound on the
maximal throughput in a packet-based system that allows a packet error rate of
1%. Considering the outage capacity, a significant gain is obtained by employing
an extra receive or transmit antenna (compared to the SISO system). This gain
is much larger than the corresponding gain in average capacity (cf. Example 3.3).
The increase in outage capacity of the (nt = 2,nr = 2) system compared to the
SISO system is around four; hence the theory predicts that a fourfold increase in
data rate can be possible by employing two extra antennas.

Example 3.6: Bound on the Frame-Error Rate.
The previous capacity results can be illustrated in a variety of ways, but a partic-
ularly interesting comparison is obtained when the outage probability is plotted
as a function of SNR for a given rate. For a system transmitting with a higher
rate than the channel capacity, error-free communication is impossible. Hence,
for a system with unity bandwidth transmitting packets with a bit rate R, the
probability of a frame, or burst error, can be lower bounded as follows:

P (frame error) ≥ P (C(H) < R) = P
(
log2

∣
∣∣I +

P

ntσ2
HHH

∣
∣∣ < R

)
(3.6.2)
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Figure 3.2. 99%-outage capacity for a system with one or two receive and transmit antennas,
as a function of the SNR.

Figure 3.3 shows the lower bound on the frame-error-rate obtained via (3.6.2) for
some different numbers of transmit and receive antennas, and for a rate of R = 2
bits/s/Hz.

3.7 Summary and Discussion

The goal of this chapter has been to quantify the promise of the MIMO channel
from an information theoretic point of view. Following the introductory discussion
in Section 3.1, we provided a heuristic motivation for the channel capacity formula
for a constant (i.e., time-invariant) and frequency-flat MIMO channel H with
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Figure 3.3. Lower bound on the frame-error-rate for some different numbers of antennas and
for a rate of R = 2 bits/s/Hz.

bandwidth B and subject to additive white Gaussian noise with variance σ2:

C(H) = B · log2
∣
∣∣I +

1
σ2

HP HH
∣
∣∣ (3.7.1)

where P is the covariance matrix of the transmitted signals (see Section 3.2).
Next, in Section 3.3 we observed that for a fixed H , and with channel knowledge
at the transmitter, P can be chosen to maximize C(H) via a result referred to
as water-filling (see Theorem 3.3 on page 27); we called the resulting capacity
the informed transmitter capacity. On the other hand, for fading (i.e., randomly
time-varying) channels, C(H) is a random variable. For this case, we stated in
Section 3.4 without proof the result that in Rayleigh fading and in the absence of
channel knowledge at the transmitter, the matrix P that maximizes EH[C(H)]



36 MIMO Information Theory Chapter 3

is proportional to the identity matrix; hence, all antennas should transmit uncor-
related streams with equal power. We termed the resulting capacity (with the
indicated choice of P ) the uninformed transmitter capacity. In Section 3.5 we
compared the informed and uninformed transmitter capacities, and found that
channel knowledge at the transmitter is more helpful for low SNR than for high
SNR. Finally, in Section 3.6 we defined the outage capacity, i.e., the value of C(H)
that is exceeded with a given probability (for a fixed P and assuming, for instance,
Rayleigh fading). The outage capacity is an important performance measure be-
cause it gives an upper bound on the error-free rate that can be achieved in a
packet-based transmission system.

Our discussion here has been somewhat pragmatic and primarily focused on
highlighting some basic concepts that are relevant to understanding the informa-
tion theoretic promises and limits of MIMO systems. The results of this chap-
ter will be used only occasionally in the following chapters, and therefore our
treatment has been intentionally brief. A somewhat more complete and rigorous
discussion can be found, for instance, in [Telatar, 1999]; see also [Marzetta
and Hochwald, 1999], [Hochwald and Marzetta, 2000], [Narula et al.,
1999], [Raleigh and Cioffi, 1998]. The capacity of frequency-selective fad-
ing channels for MIMO systems using orthogonal frequency division multiplexing
(OFDM) is discussed in, for instance, [Bölcskei et al., 2002]. Many numerical
examples and illustrations of the capacity formulas can also be found in [Foschini,
Jr. and Gans, 1998].

3.8 Proofs

Proof of Theorem 3.1

Let xG be a real-valued Gaussian random vector with zero mean and covariance
matrix P and let pxG

(x) be its p.d.f. Also, let x be any other random vector with
zero mean and covariance matrix P and denote its p.d.f. by px(x). We want to
show that

H(x) ≤ H(xG) (3.8.1)

Since by assumption, x and xG have the same first and second order moments,
we have that

∫
dx pxG(x)xkxl =

∫
dx px(x)xkxl (3.8.2)
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for any k, l. Next, note that

pxG
(x) =

1
(2π)n/2 · |P |1/2 exp

(
− 1

2
xTP−1x

)
(3.8.3)

Hence log2
(
pxG(x)

)
is a quadratic function of x. It follows from (3.8.2) that

∫
dx pxG

(x) log2 (pxG
(x)) =

∫
dx px(x) log2 (pxG

(x)) (3.8.4)

Therefore,

H(x)− H(xG) =
∫

dx pxG
(x) log2 (pxG

(x))−
∫

dx px(x) log2 (px(x))

=
∫

dx px(x) log2 (pxG
(x))−

∫
dx px(x) log2 (px(x))

=
∫

dx px(x) log2
(pxG

(x)
px(x)

)
(3.8.5)

By Jensen’s inequality [Cover and Thomas, 1991, Th. 2.6.2] and the concavity
of the logarithm it follows that

∫
dx px(x) log2

(pxG
(x)

px(x)

)
≤ log2

(∫
dx px(x) · pxG

(x)
px(x)

)

= log2

(∫
dx pxG

(x)

)

= log2(1) = 0

(3.8.6)

which proves (3.8.1).

Proof of Theorem 3.3

First, let us define Φ = UHPU as a general (not necessarily diagonal) Hermitian
matrix; we will shortly show that the optimum matrix P is such that the above Φ
is diagonal. With this notation and the definitions made in the theorem, it holds
(by the Hadamard inequality [Horn and Johnson, 1985, Th. 7.8.1]) that

f(P ) =

∣
∣
∣∣
∣
I + [Γ+ 0]UHPU

[
Γ+
0

] ∣
∣
∣∣
∣
≤

m+∏

k=1

(1 + γ2kΦk,k) (3.8.7)
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The equality in (3.8.7) is achieved if Φ is diagonal as in (3.3.7), which we assume
in what follows. Consequently:

f(P ) =
m+∏

k=1

γ2k ·
m+∏

k=1

(
1
γ2k

+Φk,k

)
(3.8.8)

Next we note that, depending on the value of P , not all {Φk,k}m+

k=1 can be strictly
positive, i.e., some Φk,k = 0. As γ21 ≥ γ22 ≥ · · · , it is evident from (3.8.7) and the
constraint

Tr {P } =
m+∑

k=1

Φk,k ≤ P (3.8.9)

that if some Φk,k corresponding to the optimal solution are zero, then they must
be Φm+,m+ ,Φm++1,m++1, . . . and not Φ1,1, . . .. Let m− be the number of Φk,k > 0;
the value of m− is yet to be determined, see below. Then it follows from the
previous observation and (3.8.8) that for the Φ in (3.3.7) we get:

f(P ) =
m+∏

k=1

γ2k ·
m−∏

k=1

( 1
γ2k

+Φk,k

)
·

m+∏

k=m−+1

1
γ2k

≤|Γ2−| ·
(

1
m−

m−∑

k=1

( 1
γ2k

+Φk,k

))m−

≤|Γ2−| ·
(
Tr

{
Γ−2
−

}
+ P

m−

)m−

(3.8.10)

The first inequality above follows from the relation between the arithmetic and
geometric means; the equalities in (3.8.10) hold if

1
γ2k

+Φk,k =
Tr

{
Γ−2
−

}
+ P

m−
(3.8.11)

for k = 1, . . . ,m− which proves the theorem. Note that (3.3.8) implicitly defines
m−.

3.9 Problems

1. Prove Equations (3.1.4), (3.1.6) and (3.1.16).
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Hint: If x is an n-dimensional complex Gaussian vector with zero mean and
covariance matrix Q, then

∫
dx px(x)xHQ−1x =Tr

{
Q−1 ·

∫
dx xxHpx(x)

}

=Tr
{
Q−1Q

}
= n

(3.9.1)

2. Prove (3.5.5).

Hint: use an eigen-decomposition of X along with a Taylor series approxima-
tion.

3. Write a computer program that reproduces Figures 3.1 and 3.2. Also plot the
corresponding curves for larger values of nr and nt. How do the average and
outage capacities behave as functions of nr and nt for a fixed SNR?

4. Consider a scenario with two receive and two transmit antennas and where
the transmit and receive correlation matrices (see Section 2.1.2) are given by

Rt =
[
1 ρt
ρt 1

]
(3.9.2)

and

Rr =
[
1 ρr
ρr 1

]
(3.9.3)

Use Monte-Carlo simulation to compute and plot the corresponding
99%−outage capacity versus ρt and ρr for some different SNR. Discuss the
result.

5. Plot the IT capacity and the UT capacity for some different numbers of an-
tennas and for some different SNR. How do the IT and UT capacities behave
for low and high SNR, respectively? Discuss the result.



Chapter 4

ERROR PROBABILITY ANALYSIS

In the high-SNR region, the average probability of a detection error (assuming
maximum-likelihood detection or maximum-ratio combining) for communication
over a fading channel usually behaves as:

P (error) ∼ Gc · SNR−Gd

The constant Gc is referred to as the coding advantage and Gd is called the diversity
order of the system. If the error rate is plotted versus the SNR on a log-log scale the
diversity order can be interpreted as the slope of the so-obtained curve, whereas the
coding advantage corresponds to the horizontal position of the curve. This chapter
presents some results on error performance analysis for SISO and MIMO systems,
that will be essential for the analysis of different transmission schemes later in
the book. Like for Chapter 3, some of the material in this chapter is of a fairly
mathematical nature, and therefore the time reader may wish to read the material
briefly before studying its details. While this chapter focuses on the analysis of the
detection error probability, Chapter 9 will discuss practical detection algorithms.

4.1 Error Probability Analysis for SISO Channels

We start by studying the average probability of a detection error for a SISO chan-
nel. Our treatment is quite brief; for a more in-depth discussion the reader is
referred to, for instance, [Simon and Alouini, 2000] which is an extensive source
of exact and approximate error probability expressions.

Assume that a symbol s0, taken from a finite constellation S, is transmitted,
and suppose that we observe:

y = hs0 + e (4.1.1)

where h is a complex number and e is zero-mean complex Gaussian noise with
variance σ2. In general, (4.1.1) arises in the analysis of a SISO channel, but it

40
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is also relevant in the context of beamforming (see Chapter 6) and when several
received signals are combined coherently in a ML or maximum-SNR sense. Suppose
that we employ the ML detection rule to detect s0:

ŝ = argmin
s∈S

|y − hs| (4.1.2)

Let ρ2b be the transmitted energy per information bit. Hence if the constellation S
has M elements, the average transmitted energy per information-bearing symbol
is

ρ2s = E[|s0|2] = log2(M) · ρ2b (4.1.3)

For many signalling schemes, the SER (Ps) or BER (Pb) can be bounded or ex-
actly expressed via an expression that contains the Gaussian Q-function [Proakis,
2001, Ch. 5]:

P0 = c · Q
(√

g · ρ2b
|h|2
σ2

)

(4.1.4)

where c and g are constants and ρ2b |h|2/σ2 is a measure of the SNR. Typically, the
value of g is related to the minimum distance in the constellation, and c is related
to the number of constellation points that achieve this minimum distance.
Binary Phase Shift Keying (BPSK): For BPSK, the SER is equal to the BER

and can be found exactly from (4.1.4) as: Pb = Ps = P0 with c = 1 and g = 2.
Quadrature Phase Shift Keying (QPSK): For QPSK with Gray coding, the

exact BER can be found as Pb = P0 with c = 1 and g = 2; an expression for the
associated SER is derived in [Simon and Alouini, 2000, Sec. 8.1.1.3]. As is
well-known, QPSK doubles the bit rate of BPSK at the same BER and transmitted
energy per bit.
M-ary Quadrature Amplitude Modulation (M-QAM): For M-QAM signalling

with an average transmitted power equal to one, a tight bound of the SER is
Ps ≤ P0 with c = 4 and g = 3/(M − 1). An accurate (for high SNR) and
often useful approximation of the BER is obtained [Simon and Alouini, 2000,
Sec. 8.1.1.2] by setting

c = 4
√

M − 1√
M · log2M

g =
3

M − 1
log2M

(4.1.5)
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in (4.1.4).
M-ary Phase Shift Keying (M-PSK): For M-PSK and high SNR, the BER can

be approximated by (4.1.4) with c = 2/ log2M and g = 2 sin2(π/M) log2M ; see
[Simon and Alouini, 2000, Sec. 8.1.1.3].

Better approximations than those listed above, as well as other related useful
expressions, can be found in the cited book [Simon and Alouini, 2000]. However,
for our purpose the stated expressions are sufficient.

For transmission over an AWGN channel, the received complex sample is a
realization of (4.1.1) where h is a constant channel gain. For a fading channel, h
is a random variable (for instance, for a Rayleigh fading channel, h is zero-mean
complex Gaussian), and it is useful to compute the BER or SER averaged over h.
We next present a theorem that is useful towards this end.

Theorem 4.1: Averaging the Gaussian Q-function.
Consider, for a fixed h, the general error probability in (4.1.4):

P0 = c · Q
(√

g · γ2

σ2

)

(4.1.6)

where c and g are constants, and γ2 = |h|2ρ2b . Suppose that h is a random variable
such that γ2 can be written as:

γ2 = hHh = ‖h‖2 (4.1.7)

where
h ∼ NC(0,Υ) (4.1.8)

and Υ is a positive semi-definite matrix. Let m be the dimension of Υ and let
n = rank{Υ}. Also, let {ε1, . . . , εn} be the nonzero eigenvalues of Υ. Then the
following statements hold.

(i) The error probability, averaged over h, is bounded by

Eh[P0] ≤ c ·
∣
∣∣I +

g

2σ2
Υ
∣
∣∣
−1

≤ c ·
( g

2σ2
)−n

·
n∏

k=1

ε−1k (4.1.9)

(ii) Suppose that all nonzero eigenvalues of Υ are equal to a constant ρ2:

εk =
Tr {Υ}

n
� ρ2, k = 1, . . . , n (4.1.10)
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Then the average of (4.1.6) can be computed exactly:

Eh[P0] =c · 2−n ·
(

1−
√

gρ2

2σ2 + gρ2

)n

·
n−1∑

k=0

⎡

⎣2−k

(
n − 1 + k

k

)
·
(

1 +

√
gρ2

2σ2 + gρ2

)k
⎤

⎦

(4.1.11)

Proof: See Section 4.4.

The reason behind the model for γ2 in (4.1.7) will become clear in later chap-
ters when we study the performance of receive and transmit diversity systems.
However, already at this point we should note that the SNR for the system stud-
ied in the introductory example in Section 1.3 takes on the form (4.1.7); hence
Theorem 4.1 can be applied to study the BER performance of this system.

Note from part (i) of Theorem 4.1 that the slope of the average BER curve,
i.e., the diversity order, is equal to n, whereas the relative shift of this curve is
determined by the eigenvalues of Υ. Also note that to obtain a more convenient
formula than (4.1.11) in part (ii) of Theorem 4.1, the equation referred to can be
approximated by

Eh[P0] ≈ c · (2g)−n

(
2n − 1

n

)(ρ2

σ2

)−n
(4.1.12)

In practice, for example when applied to QPSK, this approximation is quite accu-
rate; in particular, it indicates that the diversity order is equal to n and hence it
reinforces part (i) of the theorem.

4.2 Error Probability Analysis for MIMO Channels

We saw in Chapter 2 that both the flat and the frequency-selective MIMO channel
exhibit a matrix-algebraic representation of the following general form:

y = Xh+ e (4.2.1)

where the transmitted data matrix X is of dimension r × m and belongs to a
finite constellation of (in general non-square) matrices X . The model (4.2.1) is
applicable both to the analysis of a frequency flat MIMO channel (in which case
r = Nnr and m = nrnt; cf. (2.1.8)) and a frequency selective MIMO channel (in
which case r = nr(N0 + L) and m = nrnt(L + 1); cf. (2.2.13)).
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4.2.1 Pairwise Error Probability and Union Bound

Most of the results to follow are concerned with the so-called pairwise error prob-
ability, i.e., the probability that a certain “true” transmitted code matrix X0 is
mistaken for a different matrix X �= X0 at the receiver, P (X0 → X) (assuming
that these two matrices are the only two matrices in the code). Clearly, this error
measure depends on which particular matrices X and X0 one chooses to study.
In general, the system performance is dominated by the error events where X and
X0 are close (measured in some appropriate metric) and hence the pairwise error
probability is usually a meaningful quantity.

An upper bound on the total error probability of the system can be obtained
via the union bound [Proakis, 2001, Sec. 5.2]. Assuming that all code matrices
X are equally likely to be transmitted, the average error rate is upper bounded
by

Ptot ≤ 1
|X |

∑

Xn∈X

∑

Xk∈X ,k �=n

P (Xn → Xk) (4.2.2)

where P (Xn → Xk) denotes the probability that a transmitted code matrix Xn

is mistaken for a different code matrix Xk, and |X | is the number of elements in
the matrix constellation X .

4.2.2 Coherent Maximum-Likelihood Detection

We next study the error probability for coherent maximum-likelihood (ML) detec-
tion, i.e., assuming that h is known to the receiver. Under the assumption that h
is known and that the elements of e are independent zero-mean Gaussian random
variables with variance σ2, y is a complex Gaussian random vector with mean
E[y] = Xh and covariance matrix

E
[
(y − Xh)(y − Xh)H

]
= σ2I (4.2.3)

It follows that the likelihood function of the received data y, conditioned on the
transmitted matrix X, can be written:

p(y|X;h, σ2) = π−rσ−2r exp
(
− 1

σ2
‖y − Xh‖2

)
(4.2.4)

where r is the dimension of y. Hence, detecting X in an ML sense given y, which
amounts to maximizing the conditional probability density function (or likelihood
function) in (4.2.4), is equivalent to minimizing the following ML metric:

X̂ = argmin
X∈X

‖y − Xh‖2 (4.2.5)
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The following theorem gives an upper bound on the probability that the coherent
ML detector in (4.2.5) takes an incorrect decision.

Theorem 4.2: Pairwise error probability of coherent detection for MIMO channel.
Let us study the linear model in (4.2.1), where X is of dimension r × m, and
consider event that the ML detector (4.2.5) decides for a matrix X �= X0 in favor
of X0. Then the following results hold.

(i) For a given h, the probability of error is

P (X0 → X) =Q

(√
‖(X0 − X)h‖2

2σ2

)

(4.2.6)

(ii) Suppose h is random as follows:

h ∼ NC(0,Υ) (4.2.7)

where Υ is an m × m positive semi-definite matrix, and let

n = rank{(X0 − X)Υ(X0 − X)H} (4.2.8)

Then the probability of an incorrect decision (averaged over h) can be bounded
as follows:

Eh[P (X0 → X)] ≤
∣∣
∣I +

1
4σ2

(X0 − X)Υ(X0 − X)H
∣∣
∣
−1

≤
( 1
4σ2

)−n ·
n∏

k=1

ε−1k

(4.2.9)

where {ε1, . . . , εn} are the nonzero eigenvalues of (X0 − X)Υ(X0 − X)H .

Proof: See Section 4.4.

It follows from Theorem 4.2 that the slope of the BER curve, which corresponds
to the diversity order, is at least

Gd = n (4.2.10)

and that the coding gain is essentially determined by the product of the nonzero
eigenvalues of (X0 − X)Υ(X0 − X)H . Note also that in the special case of
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Υ = ρ2I, the average error probability is bounded by (provided that r > m, i.e.,
that X is a tall matrix):

Eh[P (X0 → X)] ≤ ∣∣(X0 − X)H(X0 − X)
∣∣−1 ·

( ρ2

4σ2
)−n

(4.2.11)

and hence a diversity order equal to n can be achieved.
From Theorem 4.2 we can also see that to minimize the probability of an

error, given h, we should choose X and X0 that maximize the Euclidean distance
‖(X0 − X)h‖2. This is an intuitively appealing result. On the other hand, to
minimize the average error probability when h is random we shall maximize the
determinant of the matrix (X0−X)Υ(X0−X)H . IfΥ = ρ2I, this determinant is
proportional to the product of the eigenvalues of the matrix (X0−X)H(X0−X);
such a product is sometimes referred to as product distance.

The following example illustrates some subtle aspects of diversity as a perfor-
mance measure. As we will see, even though the diversity gain is a well-defined
quantity, it has to be carefully interpreted.

Example 4.1: Diversity and Under-Determined Equation Systems.
Consider a system with nt = 2 transmit antennas and nr = 1 receive antenna,
and assume that we transmit a complex symbol s1 via the first antenna and at
the same time another complex symbol s2 via the second antenna. If hT = [h1 h2]
is a vector that contains the two channel gains between the transmit and receive
antennas, the receiver observes the following scalar signal:

y = hTs + e = sTh + e (4.2.12)

where s = [s1 s2]T and e is noise.
Assume that h1 and h2 are independent zero-mean complex Gaussian random

variables with covariance matrixΥ = ρ2I. Clearly, the system is under-determined
in the sense that we have one scalar measurement (y) and two scalar unknowns (s1
and s2). However, if s1 and s2 belong to a certain finite constellation S, application
of Theorem 4.2 shows that minimizing the ML metric

|y − h1s1 − h2s2|2 (4.2.13)
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with respect to {s1, s2} ∈ S gives an average error rate that is bounded by:

Eh

[
P
(
(s01, s

0
2) → (s1, s2)

)] ≤
∣
∣∣
∣∣
1 +

( ρ2

4σ2
)
· [s01 − s1 s02 − s2

]
[
(s01 − s1)∗

(s02 − s2)∗

] ∣∣∣
∣∣

−1

≤
( ρ2

4σ2
)−1(|s01 − s1|2 + |s02 − s2|2

)−1

(4.2.14)

Hence the probability of making an error in detecting s goes to zero as σ2 when
σ2 → 0 (i.e., when the SNR goes to infinity). This shows that even though the
system is under-determined we can detect both symbols consistently as SNR→ ∞.
However, since given one sample we must determine two symbols (compare with a
conventional system where one sample is typically used to determine one symbol
only), we can expect the BER performance for a finite SNR (or the coding gain)
to be poor. Of course the fact that the transmitted symbols belong to a finite
constellation is essential in arriving at the conclusion that the detection rule is
consistent as SNR → ∞.

The next example shows how diversity is related to the concept of observability.

Example 4.2: Diversity and “observability.”
We say that a code is observable (or identifiable) if, in the noise-free case, two
distinct transmitted codewords (of dimension r × m, where r ≥ m) X1 and X2

give rise to two distinct received codewords as long as the channel vector h has
at least one nonzero element. Interestingly enough, a code is observable exactly
when it provides maximal diversity: X1h �= X2h for all h �= 0 if and only if the
determinant of (X1 − X2)H(X1 − X2) is nonzero. To see this, note first that if
(X1−X2)H(X1−X2) is nonsingular, then X1h �= X2h for all h �= 0 and hence
the code is observable. Conversely, if (X1 −X2)H(X1−X2) is singular, then for
any vector h in the null space of this matrix we have X1h = X2h and the code
is not observable.

If we consider the model for flat MIMO channels in (2.1.5) instead of the
(more general) linear model (4.2.1), we can specialize the error bound for coherent
detection and obtain a very useful formula. This is illustrated in the next example.

Example 4.3: Error bounds for flat MIMO channels.
Study the model for a flat MIMO channel (2.1.5):

Y = HX + E (4.2.15)
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By rewriting (4.2.15) on the form (2.1.8):

y = vec(Y ) = vec(HX + E) = (XT ⊗ I)h + e (4.2.16)

with obvious implicit definitions of h and e, we can use Theorem 4.2(a) to bound
the error rate. We get:

P (X0 → X) = Q

⎛

⎝

√∥
∥(XT

0 ⊗ I − XT ⊗ I)h
∥
∥2

2σ2

⎞

⎠ = Q

⎛

⎝

√
‖H(X0 − X)‖2

2σ2

⎞

⎠

(4.2.17)

Assuming that E
[
hhH

]
= ρ2I and that N ≥ nt, we get from Theorem 4.2(b):

E [P (X0 → X)]

≤
∣
∣
∣∣I +

ρ2

4σ2
(XT

0 ⊗ I − XT ⊗ I)(XT
0 ⊗ I − XT ⊗ I)H

∣
∣
∣∣

−1

=
∣
∣∣
∣I +

ρ2

4σ2
(X0 − X)H(X0 − X)

∣
∣∣
∣

−nr

=
∣∣
∣
∣I +

ρ2

4σ2
(X0 − X)(X0 − X)H

∣∣
∣
∣

−nr

≤∣∣(X0 − X)(X0 − X)H
∣
∣−nr ·

(
ρ2

4σ2

)−nrnt

(4.2.18)

4.2.3 Detection with Imperfect Channel Knowledge

The following result is concerned with the error probability in the case in which
an estimate of h is used in lieu of the true h in the coherent detector in (4.2.5).

Theorem 4.3: Diversity with imperfect channel knowledge.
Assume that X0 −X has full column rank for all X �= X0 and that the following
detection rule is employed in lieu of (4.2.5):

X̂ = argmin
X∈X

‖y − Xĥ‖2 (4.2.19)

where
ĥ ∼ NC(h, σ2Σ) (4.2.20)
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and Σ is a constant positive semi-definite matrix, and where the constant σ2 in
(4.2.20) is the same as the noise power σ2. Then the system provides a diversity
of order n; in other words, the diversity order remains unchanged if h is replaced
by a perturbed value of itself in the ML detection rule (yet, the reader should note
that ĥ → h as σ2 → 0).

Proof: See Section 4.4.

Replacing the true channel h by an estimate ĥ in the coherent detector is
common practice in training-based detectors (see, e.g., Section 9.4 in this text). In
this context, the result in Theorem 4.3 is encouraging as it indicates that although
channel estimation errors in general decrease the error performance, they do not
destroy the diversity properties of the system. Also, the code design criteria from
Theorem 4.2 remain valid also in the case when an estimated channel is used in
lieu of the true one. Similar conclusions were also drawn in [Tarokh et al.,
1999b].

4.2.4 Joint ML Estimation/Detection

The following result quantifies the diversity and coding advantage of a system if a
joint detection/estimation approach is used at the receiver.

Theorem 4.4: Bound on the error rate of noncoherent detection.
Assume that h is unknown and that X is detected via a generalized likelihood-ratio
test (GLRT), i.e., by minimizing ‖y − Xh‖2 jointly with respect to h and X:

min
h,X∈X

‖y − Xh‖2 = min
X∈X

{

min
h

‖y − Xh‖2
}

(4.2.21)

Suppose also that the code matrices have full column rank. Then, neglecting a
higher-order term, the average error probability is upper bounded by:

Eh[P (X0 → X)] ≤
∣∣
∣I +

1
4σ2

Π⊥
XX0ΥXH

0

∣∣
∣
−1 ≤

( 1
4σ2

)−n ·
n∏

k=1

ε−1k (4.2.22)

where {ε1, . . . , εn} are the nonzero eigenvalues of Π⊥
XX0ΥXH

0 .

Proof: See Section 4.4.

The formulation in (4.2.21) above assumes that the receiver implements a gen-
eralized likelihood ratio test (GLRT) [Kay, 1998, Sec. 6.4.2]. Another possibility
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is to consider h random (for instance, with a Gaussian distribution), and maximize
(with respect to X) the likelihood function averaged over the distribution of h. It
turns out that these two approaches give the same result under certain conditions
[Larsson et al., 2002b] (see also Exercise 9.7 on page 209). See also [Brehler
and Varanasi, 2001] for a more detailed discussion of error probabilities for
noncoherent detection.

Theorem 4.4 is useful for the design of space-time codes for noncoherent sys-
tems, with differential encoding as an important special case (see Section 9.6). In
essence, the theorem shows that provided that the matrix Π⊥

XX0ΥXH
0 has full

rank, maximal diversity is achievable even in total absence of channel knowledge
at the receiver. In a way, this is a stronger conclusion than that of Theorems 4.2
and 4.3, which showed that full diversity can be achieved when the code matrices
are detected coherently and via a training-based approach, respectively.

Example 4.4: Geometrical interpretation of the error bound.
Suppose that Υ = ρ2I. Since

∣
∣∣I +

1
4σ2

Π⊥
XX0ΥXH

0

∣
∣∣ =

∣
∣∣I +

ρ2

4σ2
XH
0 Π

⊥
XX0

∣
∣∣ (4.2.23)

it is clear from Theorem 4.4 that the asymptotic error rate is inversely propor-
tional to the product of the eigenvalues of the matrix XH

0 Π⊥
XX0. Therefore, to

minimize the detection error probability, the eigenvalues of this matrix, which give
the “angles” between the range space of X0 and the range space of X, should be
maximized.

Example 4.5: Comparison between coherent and noncoherent ML.
Let Υ = ρ2I. If we compare the error bound for noncoherent detection in Theo-
rem 4.4 with that for coherent detection in Theorem 4.2, we discover that for large
SNR=ρ2/σ2:

Eh[P (X0 → X)]
∣
∣∣
coherent

≤ ∣
∣(X0 − X)H(X0 − X)

∣
∣−1

( ρ2

4σ2
)−n

Eh[P (X0 → X)]
∣
∣∣
noncoherent

≤ ∣
∣XH

0 Π
⊥
XX0

∣
∣−1

( ρ2

4σ2
)−n

(4.2.24)

The ratio between these error probabilities is:
∣
∣XH

0 Π
⊥
XX0

∣
∣

∣∣(X0 − X)H(X0 − X)
∣∣ (4.2.25)



Section 4.3. Summary and Discussion 51

Since Π⊥
XX = 0, we have that:

(X − X0)H(X − X0)− XH
0 Π

⊥
XX0

= (X − X0)H(X − X0)− (X − X0)HΠ⊥
X(X − X0)

= (X − X0)HΠX(X − X0)

(4.2.26)

The matrix in (4.2.26) is always positive semi-definite. Hence
∣
∣
∣XH

0 Π
⊥
XX0

∣
∣
∣ ≤

∣∣(X − X0)H(X − X0)
∣∣ (4.2.27)

and therefore the ratio in (4.2.25) is always less than one.
Using the union bound, (4.2.2), we find that the detection performance loss

(i.e., the increase in SNR that is necessary for a noncoherent ML detector to
achieve the performance of the coherent ML detector) can be approximated by:

∆SNR ≈
(∑

Xn∈X
∑

Xk∈X ,k �=n |(Xn − Xk)H(Xn − Xk)|
∑

Xn∈X
∑

Xk∈X ,k �=n |XH
n Π⊥

Xk
Xn|

)1/n
(4.2.28)

Note that the above bounds for coherent and non-coherent detection may not be
tight, but we can expect them to be off by a similar amount; hence their relative
comparison should make sense.

4.3 Summary and Discussion

The purpose of this chapter has been to derive exact expressions for, and bounds
on, the detection error probability for transmission over a MIMO channel. The
expressions derived in this chapter are useful both for the analysis of given space-
time codes, as well as for the design of new coding schemes, and they will be used
in most of the following chapters.

We started in Section 4.1 by establishing a formula (see Theorem 4.1) for the
average of the Gaussian Q-function when its argument is a sum of exponentially
distributed random variables; this is usually the case for systems with diversity
combining. For the case when these exponentially distributed random variables
are i.i.d., we derived an exact expression, whereas in the general case we resorted
to a Chernoff bound.

Next in Section 4.2 we established formulas for the pairwise error probability in
a MIMO system assuming coherent detection (Theorem 4.2), detection with imper-
fect channel knowledge (Theorem 4.3) and noncoherent detection (Theorem 4.4).
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Considering a general data model of the form y = Xh + e, we showed that for
Rayleigh fading the probability (averaged over the channel distribution) that a
transmitted matrix X0 is mistaken for another matrix X essentially is inversely
proportional to the quantity |I + ρ2/(4σ2)(X0 − X)H(X0 − X)| (for coherent
detection), and on |I + ρ2/(4σ2)XH

0 Π⊥
XX0| (for noncoherent detection), where

ρ2/σ2 is the SNR. Hence the error rate will decay as (ρ2/σ2)− rank{X0−X} and
(ρ2/σ2)− rank{Π⊥

XX0}, for coherent and noncoherent detection, respectively, when
the SNR goes to infinity; these formulas can be used to determine the diversity
order of a given MIMO system.

Although the error bounds presented in this chapter may not be tight in
all cases (in particular for a large number of transmit or receive antennas, see
[Biglieri et al., 2002]), they provide a systematic way of tackling the prob-
lem of designing space-time constellations and therefore their use has become one
of the major design criteria for space-time codes. Note that under certain cir-
cumstances, a randomly chosen (finite) constellation of matrices will yield a code
that gives maximal diversity with probability one, provided that the receiver uses
maximum-likelihood decoding. However, it is in general difficult to find constella-
tions that (in addition to maximal diversity) also provide high coding gains and at
the same time a receiver structure with tractable complexity. This issue is further
complicated by the fact that the matrix X above may be forced to have a special
structure; cf. (2.1.8) and (2.2.13). We conclude that the problem of finding an
“optimal” constellation of space-time matrices by using the above criteria is in
general a difficult problem.

4.4 Proofs

Proof of Theorem 4.1

Consider the following eigen-decomposition:

Υ =
[
U U 0

]
[
∆ 0
0 0

] [
UH

UH
0

]
(4.4.1)

where
∆ = {ε1, . . . , εn} (4.4.2)

is a positive definite diagonal matrix of dimension n × n, U is an m × n matrix,
U0 is of dimension m × (m − n) and

[
U U0

] [UH

UH
0

]
= I (4.4.3)
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Then
[
UH

UH
0

]
Υ
[
U U0

]
=
[
∆ 0
0 0

]
(4.4.4)

and consequently
[
UH

UH
0

]
h ∼ NC

(
0,
[
∆ 0
0 0

])
(4.4.5)

It follows that

‖h‖2 = hHh =
n∑

l=1

εlχ
2
l (4.4.6)

where {χ2l }nl=1 are independent and exponentially distributed random variables
with the same probability density function

pχ2
l
(x) = e−x (4.4.7)

The average error probability is

Eh[P0] =c ·
∫ ∞

0
· · ·

∫ ∞

0
ds21 · · · ds2n

·
(

n∏

l=1

1
εl
exp

(
− s2l

εl

))

· Q
(√

g ·
∑n

k=1 s2k
σ2

) (4.4.8)

If ε1 = . . . = εn = ρ2, the integral in (4.4.8) can be evaluated exactly [Simon
and Alouini, 2000, Sec. 9.2.2]. The result is (4.1.11). In the general case, an
exact expression is hard to obtain (a closed-form expression involving an indefinite
integral can be found in [Simon and Alouini, 2000, Sec. 9.2.3]). However, we
can easily obtain a bound on the error probability as well as establish that the
diversity order is equal to rank{Υ}. By the Chernoff bound [Proakis, 2001,
Sec. 2.1.5]:

Q

(√

g ·
∑n

k=1 s2k
σ2

)

≤ exp
(
−g ·

∑n
k=1 s2k
2σ2

)
(4.4.9)
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Hence we get

Eh[P0] ≤ c ·
∫ ∞

0
· · ·

∫ ∞

0
ds21 · · · ds2n

n∏

l=1

(
1
εl
exp

(
−g · s2l

2σ2
−s2l

εl

))

≤ c ·
n∏

l=1

(
1
εl

∫ ∞

0
ds2 exp

(
−g · s2

2σ2
− s2

εl

))

= c ·
n∏

l=1

(
g · εl

2σ2
+ 1

)−1

= c ·
∣∣
∣I +

g

2σ2
∆
∣∣
∣
−1

= c ·
∣
∣
∣I +

g

2σ2
Υ
∣
∣
∣
−1

(4.4.10)

Obviously, we also have
n∏

l=1

(
g · εl

2σ2
+ 1

)−1
≤
( g

2σ2
)−n

·
n∏

l=1

ε−1l (4.4.11)

and the proof is completed.

Proof of Theorem 4.2

Let X̆ = X0 − X. To show part (i), note first that an incorrect decision is taken
in favor of X �= X0 if and only if

‖y − Xh‖2 < ‖y − X0h‖2 (4.4.12)

or equivalently

2Re
{
eHX̆h

}
< −hHX̆

H
X̆h (4.4.13)

For a given X̆ and a given h, it is easy to see that

2Re
{
eHX̆h

} ∼ N(0, 2σ2hHX̆
H

X̆h) (4.4.14)

and hence

P (X0 → X) =P
(
2Re

{
eHX̆h

}
< −hHX̆

H
X̆h

)

=Q

⎛

⎝

√
‖X̆h‖2
2σ2

⎞

⎠
(4.4.15)

Part (ii) follows by applying Theorem 4.1 to (4.4.15).
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Proof of Theorem 4.3

Let X̆ = X0−X. A calculation similar to that in the proof of Theorem 4.2 shows
that the probability of error is

P (X0 → X) =P
(
‖y − Xĥ‖2 < ‖y − X0ĥ‖2

)

=P
(
2Re

{
eHX̆h

}− 2Re
{
δHXHX̆h

}

< −hHX̆
H

X̆h − 2Re
{
eHX̆δ

}

− δHXHXδ + δHXH
0 X0δ

)

(4.4.16)

where δ = ĥ − h. From the Chernoff bound and the fact that

hHX̆
H

XΣXHX̆h

hHX̆
H

X̆h
≤ λmax(XΣXH) � α (4.4.17)

where α does not depend on h, it follows that (also see the argument following
(4.4.19)):

P (X0 → X) =P
(
2Re

{
eHX̆h

}− 2Re
{
δHXHX̆h

}
< −hHX̆

H
X̆h

)

≤ exp
(
− 1

4σ2
· (hHX̆

H
X̆h)2

hHX̆
H

X̆h + hHX̆
H

XΣXHX̆h

)

≤ exp
(
− hHX̆

H
X̆h

4(1 + α)σ2
)

(4.4.18)

The remaining three terms in (4.4.16),

2Re
{
eHX̆δ

}
+ δHXHXδ − δHXH

0 X0δ (4.4.19)

are higher-order terms and can be neglected in an asymptotic analysis. In partic-
ular, they have a variance of order σ4 whereas the variance of the other terms in
(4.4.16) is of the order σ2. A more rigorous analysis would involve verifying the
known fact that the tail of the probability density function for indefinite quadratic
forms of Gaussian random variables decays exponentially.

Applying the averaging technique used at the end of the proof of Theorem 4.1
to (4.4.18) we find that the error probability decays as σ2·rank{Υ} also in this case.
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Proof of Theorem 4.4

Minimization of ‖y − Xh‖ with respect to h yields (provided that X has full
column rank):

ĥ = (XHX)−1XHy (4.4.20)

Inserting this expression into the original cost function shows that the joint esti-
mation/detection problem is equivalent to maximizing

yHX(XHX)−1XHy = ‖ΠXy‖2 (4.4.21)

with respect to X ∈ X . Let

∆Π =ΠX0 −ΠX (4.4.22)

Note that the matrix ∆Π is Hermitian, but not necessarily positive definite. Also
note that

∆ΠX0 = Π⊥
XX0 (4.4.23)

The probability that the ML detector makes a mistake is:

P (X0 → X) = P
(‖ΠXy‖2 > ‖ΠX0y‖2

)

=P
(
(X0h + e)H∆Π(X0h + e) < 0

)

=P
(
2Re

{
hHXH

0 ∆Πe
}
+ eH∆Πe < −hHXH

0 ∆ΠX0h
)

=P
(
2Re

{
hHXH

0 Π
⊥
Xe

}
+ eH∆Πe < −hHXH

0 Π
⊥
XX0h

)

(4.4.24)

The term eH∆Πe is of higher order and may be neglected in an asymptotic
analysis (cf. the remark in the previous proof). By the Chernoff bound we have
that:

P
(
2Re

{
hHXH

0 Π
⊥
Xe

}
< −hHXH

0 Π
⊥
XX0h

)

≤ exp

(

− 1
4σ2

·
(
hHXH

0 Π
⊥
XX0h

)2

hHXH
0 Π⊥

XX0h

)

=exp
(
− hHXH

0 Π⊥
XX0h

4σ2
)

(4.4.25)

Hence, by averaging in a way similar to the proof of Theorem 4.1, and observing
that

Π⊥
XΠ⊥

X = Π⊥
X (4.4.26)
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we find that:

Eh[P (X0 → X)] ≤
∣
∣
∣I +

1
4σ2

Π⊥
XX0ΥXH

0 Π
⊥
X

∣
∣
∣
−1

=
∣
∣∣I +

1
4σ2

Π⊥
XX0ΥXH

0

∣
∣∣
−1 (4.4.27)

and the result follows. The second inequality in (4.2.22) is trivial.

4.5 Problems

1. Consider the linear model in (4.2.1) and study a space-time code consisting
of three matrices as follows:

X1 =
[
1 0
0 1

]
, X2 =

[
1 0
0 −1

]
, X3 =

[
0 1
1 0

]
(4.5.1)

Suppose that the channel h is of dimension 2 × 1 and that h ∼ NC(0, ρ2I)
where σ2 is the power (variance) of the noise. Hence ρ2/σ2 is effectively a
measure of the signal-to-noise ratio (SNR).

(a) Use Theorem 4.2 to derive a bound of the average error probabilities
P (X1 → X2), P (X2 → X3) and P (X1 → X3). Simplify the result as
much as possible.

(b) Which pair of two matrices do you think are the most likely to be “mis-
taken for each other” at the receiver? Discuss the result.

(c) Does the code provide full diversity order? If not, suggest a modification
of it to give maximal diversity.

2. Let h ∼ NC(0, 1).

(a) Compute (via numerical averaging or “Monte-Carlo simulation”) the fol-
lowing expectation (over h):

E
[
Q
(√

α · |h|2
)]

(4.5.2)

Plot the result as a function of α on a dB-log scale (i.e., vertical axis
logarithmic and horizontal axis in dB). (We can think of this as the
average BER for a system on a Rayleigh fading channel without diversity,
where α is the average SNR and h is a channel gain.) Discuss the result.

(b) Next, use the Theorem 4.1(b) to compute the average exactly. Compare
with your numerical average.
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(c) Finally, use Theorem 4.1(a) to find a (Chernoff) bound on the average
error probability. Plot this bound in the same figure. How tight is the
bound?

3. Prove (4.2.18). Also, derive a counterpart to (4.2.18) for that case when
E
[
hhH

]
= RT

t ⊗ Rr (see Section 2.1.2). Finally, show that for noncoherent
detection (see Section 4.2.4), the corresponding error bound becomes:

EH[P (X0 → X)]
∣
∣
∣
noncoherent

≤ ∣∣X0Π⊥
XHXH

0

∣∣−nr
( ρ2

4σ2
)−nrnt

(4.5.3)

where nr and nt are the number of receive and transmit antennas respectively.

Hint: for square matrices A and B of dimensions m×m and n×n, respectively,
it holds that |A ⊗ B| = |A|n · |B|m.

4. In Example 4.1, suppose that s1 and s2 are BPSK symbols. Implement the
ML detector (4.2.13) and plot its empirical error rate as a function of SNR.
Compare the result to the union bound obtained via (4.2.2) and (4.2.14), as
well as to the the exact error probability for BPSK over a Rayleigh fading
SISO channel.

5. State and prove the extensions of Theorems 4.1, 4.2, 4.3 and 4.4 to the case
of Rice fading:

h ∼ NC(µh,Υ) (4.5.4)

6. Extend Theorems 4.2, 4.3 and 4.4 to the case of colored noise:

e ∼ NC(0,Λ) (4.5.5)

for some positive definite (known) matrix Λ.

Hint: Note that e can be written

e = Λ1/2ew (4.5.6)

where

ew ∼ NC(0, I) (4.5.7)
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7. Formally prove that neglecting the higher-order terms in (4.4.16) has no effect
on the asymptotic slope of the error probability curve.

Hint: First show that for any two random variables x and y that satisfy

P (|x| ≥ t) ≤ M · exp(−atγ)
P (|y| ≥ t) ≤ M · exp(−atγ)

(4.5.8)

for some positive constants a and γ, it holds that

P (|x + y| ≥ t) ≤ 2M · exp (− a(t/2)γ
)

P (|xy| ≥ t) ≤ 2M · exp (−atγ/2
) (4.5.9)



Chapter 5

RECEIVE DIVERSITY

In this chapter we study some basic properties of a system with a single transmit
antenna (nt = 1), but an arbitrary number nr ≥ 1 of receive antennas (see Fig-
ure 5.1). Such systems play an important role in practice: receive diversity has
been used extensively during the 1990’s for improving the uplink performance in
cellular systems. The discussion in the chapter serves as important background
material, and it will also help in setting the framework and the goals for the rest
of the book.

5.1 Flat Channels

For a system with nt = 1 transmit antenna and nr ≥ 1 receive antennas, the
transmitted matrix X in Section 2.1 reduces to a scalar x (hence N = 1). Since
no transmit encoding is necessary, we will simply set x = s; the sequence of
symbols s is typically obtained by encoding a bitstream. Also, in this case, the
MIMO channel matrix H in (2.1.2) reduces to a column vector h of length nr that
contains the nr channel gains between the transmit antenna and the nr receive
antennas.

Assume that at a certain time instant, a complex symbol s is transmitted.
Then the receiver observes

y = hs + e (5.1.1)

where e is an nr-vector of noise. We assume, as before, that e is spatially white
Gaussian noise:

e ∼ NC(0, σ2I) (5.1.2)

If h is a Gaussian random variable satisfying

h ∼ NC(0, ρ2I) (5.1.3)

60
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TX

RX

nr

1

Figure 5.1. A receive diversity system (here nt = 1, nr ≥ 1).

then Theorem 4.2 (see page 45) is applicable and it shows that the system can
achieve a diversity of order nr, provided that we use ML decoding to detect the
transmitted symbol s. To see this, observe that (5.1.1) can be written as:

y = (sI)h + e (5.1.4)

which is of the form of (4.2.1).
We can study the ML receiver structure associated with the system (5.1.1) in

more detail as follows. For a given h, the ML detection of s given y amounts to
minimizing the following Euclidean metric (cf. the discussion in Section 4.2.2):

‖y − hs‖2 (5.1.5)

with respect to s ∈ S. Since
‖y − hs‖2 = ‖y‖2 + |s|2‖h‖2 − 2Re

{
s∗hHy

}

= ‖h‖2 ·
∣∣
∣s − hHy

‖h‖2
∣∣
∣
2
+ const.

(5.1.6)

it follows that minimizing (5.1.5) is equivalent to minimizing

|s − ŝ|2 (5.1.7)

where

ŝ � hHy

‖h‖2 (5.1.8)
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This is a simple scalar detection problem.
It also follows readily that

ŝ ∼ NC

(
s,

σ2

‖h‖2
)

(5.1.9)

Hence multiplication of the received data y with hH/‖h‖2 transforms the SIMO
channel into a scalar AWGN channel with SNR

SNR =
‖h‖2
σ2

· E [|s|2] (5.1.10)

Clearly, the error probability of this system depends on h only via the SNR in
(5.1.10). Hence Theorem 4.1 (see page 42) can be applied to compute an expression
for the error rate. In particular, a direct application of that theorem shows (once
again) that the system achieves a diversity of order nr.

The above simple calculation shows that the ML detection of s given the vector
y is equivalent to linear processing of the received data (viz., multiplication of y
with hH/‖h‖2) followed by the solution of a scalar ML detection problem. The
vector hH/‖h‖2 can be interpreted as a spatial matched filter, or a beamform-
ing vector, although the latter interpretation might (depending on the antenna
configuration) lack the interpretation of standard beamforming in the context of
classical array signal processing [Van Trees, 2002].

Example 5.1: Non-optimal linear processing of received data.
The linear processing in (5.1.8) is only one possible way of forming a decision
statistic for the detection of s. If we instead let

ŝ∗ =
wHy

wHh
(5.1.11)

where w is an arbitrary but fixed vector, then

ŝ∗ ∼ NC

(
s,

‖w‖2∣
∣wHh|2 · σ2

)
(5.1.12)

Clearly, ŝ∗ can be interpreted as the output of a scalar AWGN channel, and there-
fore it can be used as a decision statistic, in the same way as ŝ in (5.1.8). The
SNR in ŝ∗ is found to be

SNR∗ =

∣
∣wHh|2
‖w‖2 · σ2 · E [|s|2] (5.1.13)
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Under the assumption (5.1.3),

wHh ∼ NC(0, ‖w‖2 · ρ2) (5.1.14)

Hence, provided that w is fixed and non-random (which implies in particular that
w = h is not possible here), Theorem 4.1 (see page 42) can be applied (with
γ2 = |wHh|2) to show that diversity is not achieved for any w.

5.2 Frequency-Selective Channels

Next we study a receive diversity system operating on a frequency-selective fading
channel. For such a system, the sequence of transmitted vectors {x(n)} reduces to
a sequence of scalars {x(n)}. As for the case of flat fading, no transmit encoding
is necessary and hence we set x(n) = s(n). Also, in the case under study, the
channel “impulse response” H(z−1) reduces to a vector-valued FIR filter h(z−1)
with coefficients {h0, . . . ,hL} of dimension nr × 1.

The received data samples y(n) for n = 0, . . . , N0 + Npost − 1 can be written:

y(n) =
L∑

l=0

hlx(n − l) + e(n) = h(z−1)x(n) + e(n) (5.2.1)

where e(n) is noise. Let

S �

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎢⎢
⎢⎢
⎢⎢
⎣

s(0) s(−1) · · · s(−L)
s(1) s(0) s(1− L)
...

. . .
...

...
...

... s(0)

...
...

s(N0 + Npost − 2) s(N0 + Npost − 3) s(N0 + Npost − L − 2)
s(N0 + Npost − 1) s(N0 + Npost − 2) · · · s(N0 + Npost − L − 1)

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎥⎥
⎥⎥
⎥⎥
⎦

(5.2.2)

be a Toeplitz matrix that contains the transmitted symbols. If we arrange the
received data in a vector as follows:

y =
[
yT (0) · · · yT (N0 + Npost − 1)

]T (5.2.3)
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we can write

y =
(
S ⊗ Inr

)
h + e (5.2.4)

where

h = vec
( [

h0 · · · hL

] )
(5.2.5)

and

e =
[
eT (0) · · · eT (N0 + Npost − 1)

]T (5.2.6)

is a vector of noise (see (2.2.13) in Section 2.2.2).
Let s0(n) be the true transmitted sequence of data and let s(n) be any other

hypothetical data string. Also, let S0 − S be a Toeplitz matrix formed from the
error signal s0(n)−s(n) in the same way as S in (5.2.2) is built from s(n). Then we
can infer from Theorem 4.2 (see page 45) that a diversity of order nr(L+1) can be
achieved if the matrix S0 − S has full column rank for all possible nonzero error
signals {s0(n) − s(n)}, and provided that E[hhH ] is nonsingular. By studying
(5.2.2) we can expect that the rank properties of S0 − S will depend heavily on
the choice of preambles and postambles (and as we will see below this is indeed
the case). Note that all the above equations are valid also in the special case of
one receive antenna (nr = 1), in which case the achievable diversity order becomes
L + 1.

5.2.1 Transmission with Known Preamble and Postamble

Assume that we use a fixed preamble and postamble of length Npre and Npost,
respectively, where Npre ≥ L and Npost ≥ L, and that at least one of these sequences
is known to the receiver. Data are transmitted for n = −Npre, . . . , N0 + Npost − 1
and received for n = 0, . . . , N0+Npost − 1. See Figure 5.2 for an illustration of the
transmission scheme that we consider. (Figure 5.2 is similar to Figure 2.5, but no
assumptions on the preambles and postambles were made in Chapter 2.)

Diversity

Note first that at least one element of s0(n) − s(n) must be nonzero for n =
0, . . . , N0−1 and hence at least one diagonal of S0−S is nonzero. If the preamble
is known to the receiver, then the error signal s0(n) − s(n) must be zero during
the preamble:

s0(n)− s(n) = 0, n = −Npre, . . . ,−1 (5.2.7)



Section 5.2. Frequency-Selective Channels 65

to receiver
knownknown

to receiver

DataPre Post

Transmit

Receive

−Npre N0 − 1 N0 + Npost − 1

n

0

Figure 5.2. Transmission with a known preamble and postamble.

Consequently the matrix S0−S will have zeros above its main diagonal; therefore
its column rank will be equal to L + 1. Conversely, if the postamble is known at
the receiving end, the following error signal must be identical to zero:

s0(n)− s(n) = 0, n = N0, . . . , N0 + Npost − 1 (5.2.8)

and therefore S0−S will have only zeros below its N0th diagonal; thus its column
rank will be equal to L + 1 also in this case. Consequently, with ML decoding, a
diversity of order nr(L+1) can be achieved if either the preamble or the postamble
is known to the receiver.

If both the preamble and postamble are known, we can expect an increase in the
BER performance compared to the case when only one of them is known (although
the slope of the BER curve, which determines the diversity order, will be the same
in both these cases). This is so since in this case there are fewer unknowns in the
detection problem. Transmission schemes where the preambles and postambles are
known to the receiver are very common in practice. For instance, such a scheme
is used in the GSM system [Mouly and Pautet, 1992].

Equalization via Exact and Approximate MLSD

Let us consider the transmission of N0 symbols together with an associated pream-
ble and postamble of length Npre and Npost, respectively. Without loss of generality,
we assume in this subsection, to simplify the notation, that L = Npre = Npost (the
channel can be appropriately padded with zeros). Assume that the preamble and
postamble are known to the receiver. Then ML detection of the transmitted sym-
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bols amounts to minimizing the following metric:

N0+L−1∑

n=0

∥
∥∥
∥∥
y(n)−

L∑

l=0

hls(n − l)

∥
∥∥
∥∥

2

(5.2.9)

with respect to {s(n)}. We know from the discussion above that this MLSD
achieves a diversity of order nr(L + 1). Clearly, the minimization of (5.2.9) can
be performed via the Viterbi algorithm (VA) [Proakis, 2001, Chap. 10], [Meyr
et al., 1998, Chap. 13].

Since the quantities involved in (5.2.9) are nr-vectors the computational com-
plexity associated with the application of VA is rather high. This computational
burden can be reduced as follows. Let us rewrite (5.2.9) as:

N0+L−1∑

n=0

∥
∥∥
∥∥
y(n)−

L∑

l=0

hls(n − l)

∥
∥∥
∥∥

2

=
N0+L−1∑

n=0

‖y(n)‖2 − 2Re

{
N0+L−1∑

n=0

(
h(z−1)s(n)

)H
y(n)

}

+
N0+L−1∑

n=0

(
h(z−1)s(n)

)H(
h(z−1)s(n)

)

(5.2.10)

We have that
N0+L−1∑

n=0

(
h(z−1)s(n)

)H
y(n) =

N0+L−1∑

n=0

L∑

l=0

(hls(n − l))Hy(n)

≈
N0+L−1∑

n=0

L∑

l=0

s∗(n)hH
l y(n + l) =

N0+L−1∑

n=0

s∗(n)hH(z)y(n)

(5.2.11)

where the approximation denoted by “≈” is due to end-effects and hence the
approximation error is O(1) for N0 � 1 (while the whole expression in (5.2.11) is
O(N0)). Note that (5.2.11) depends on y(n) for values of n for which y(n) is not
available, and this problem can be overcome by setting these values to zero. The
approximation errors induced in that way are also O(1).

Next, let γ(z−1) be the z-transform of the autocorrelation sequence associated
with the channel impulse response:

γ(z−1) =
L∑

l=−L

γlz
−l = hH(z)h(z−1) (5.2.12)
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and note that [h(z−1)s(n)]H [h(z−1)s(n)] is real. Hence

N0+L−1∑

n=0

(
h(z−1)s(n)

)H(
h(z−1)s(n)

)

=Re

{
N0+L−1∑

n=0

L∑

l=0

(
h(z−1)s(n)

)H
hls(n − l)

}

≈Re
{

N0+L−1∑

n=0

L∑

l=0

(
h(z−1)s(n + l)

)H
hls(n)

}

=Re

{
N0+L−1∑

n=0

(
L∑

l=0

hH
l

(
h(z−1)s(n + l)

)
)∗

s(n)

}

=Re

{
N0+L−1∑

n=0

(
hH(z)h(z−1)s(n)

)∗
s(n)

}

=Re

{
N0+L−1∑

n=0

L∑

l=−L

γ∗
l s

∗(n − l)s(n)

}

=Re

{
N0+L−1∑

n=0

L∑

l=−L

γls
∗(n)s(n − l)

}

=Re

{
N0+L−1∑

n=0

( −1∑

l=−L

γls
∗(n)s(n − l)

+
L∑

l=1

γls
∗(n)s(n − l) + γ0s

∗(n)s(n)

)}

≈Re
{

N0+L−1∑

n=0

(

γ0s
∗(n)s(n) + 2

L∑

l=1

γls
∗(n)s(n − l)

)}

(5.2.13)

where in the last step we also used the fact that γ∗
−l = γl.

Equations (5.2.10), (5.2.11) and (5.2.13) show that maximizing the likelihood
function in (5.2.9) is equivalent (to within an O(1) approximation attributable to
end-effects) to maximizing the following metric:

Re

{
N0+L−1∑

n=0

s∗(n)

(

z(n)−
L∑

l=1

γls(n − l)− 1
2
γ0s(n)

)}

(5.2.14)
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where z(n) is the following matched filtered sequence:

z(n) = hH(z)y(n) (5.2.15)

The simplified metric in (5.2.14) can be maximized by a scalar Viterbi equalizer
with memory length L, as opposed to (5.2.9) which requires a vector-valued Viterbi
algorithm with memory length L. Note also that modulo the approximation made,
the matched filtered data z(n) is a sufficient statistic for ML detection.

Linear MMSE Equalization

Even with the approximation made above the computational complexity of Viterbi
equalization is typically rather high. An alternative to using the Viterbi algo-
rithm is to use a linear equalizer, i.e., to form estimates of s(n) that are linear in
the received data. Once such linear equalizer is the minimum-mean square error
(MMSE) method that we describe next.

Specifically, we seek a vector-valued linear FIR filter ξ(z−1) such that the
output of the filtered sequence

ŝ(n) = ξT (z−1)y(n) = ξT (z−1)h(z−1)s(n) + ξT (z−1)e(n) (5.2.16)

recovers s(n) in a minimum mean-square error (MMSE) sense (to obtain estimates
of the transmitted symbols, ŝ(n) is projected onto the signal constellation S). Note
that the fully optimal MMSE filter ξ(z−1) may have an infinite length. We will
look for a filter ξ(z−1) of a given length 2M + 1, which is suboptimal in general.
If we increase M , the set of filters {ξ(z−1)} increases and hence we approach the
optimal filter. On the other hand, if M is too large, the approximations due to
end-effects may not be negligible unless the block length N is correspondingly
large. Moreover, the computational burden increases with increasing M . Hence,
finding the optimal value of M in a practical application is a tradeoff between
performance and computational complexity.

The MMSE filter design problem amounts to minimizing:

E
[|ŝ(n)− s(n)|2] =E

[|ξT (z−1)y(n)− s(n)|2]

=E
[|ξT (z−1)h(z−1)s(n)− s(n)|2]

+ E
[|ξT (z−1)e(n)|2]

(5.2.17)

with respect to the coefficients of ξ(z−1). Before we proceed we note that the
MMSE filter output may depend on values of y(n) for time indices n where y(n)
is not available. This “end-effect” problem has to be overcome by a suitable
approximation, such as setting the unavailable values to zero.
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To minimize (5.2.17), assume for simplicity that s(n) is white, and that

ρ2 = E
[|s(n)|2] (5.2.18)

is known. Note from (5.2.17) that (provided M ≥ L):

E
[|ŝ(n)− s(n)|2] = ρ2 ·

M∑

l=−M

∣
∣
∣∣
∣

(
M∑

k=−M

ξTk hl−k

)

− δl

∣
∣
∣∣
∣

2

+ σ2 ·
M∑

k=−M

‖ξk‖2

(5.2.19)

where, as before, σ2 is the variance of the elements of e(n). In (5.2.19), the filter
coefficients are assumed by convention to be zero for indices where they are not
defined. Let

ξ = [ξT−M · · · ξTM ]T (5.2.20)

be the coefficient vector of the sought filter, and let χ be a (2M +1)×nr(2M +1)
Toeplitz matrix defined according to:

χ =

⎡

⎢
⎢⎢
⎢⎢
⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

hT
0 0 · · · · · · 0

hT
1 hT

0
. . . . . . . . .

...
...

. . . . . .

hT
L

. . . . . .

0
. . . . . .

...
... 0
0 · · · 0 hT

L · · · hT
0

⎤

⎥
⎥⎥
⎥⎥
⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦

(5.2.21)

Finally, let f0 be a (2M +1)-vector whose (M +1)th element is equal to one and
all other elements are equal to zero. Then we can write (5.2.19) in a matrix form
as:

E
[|ŝ(n)− s(n)|2] =ρ2 · (χξ − f0)

H(χξ − f0) + σ2 · ‖ξ‖2

=

∥
∥∥
∥
∥

[√
ρ2f0
0

]
−

[√
ρ2 · χ√
σ2 · I

]

ξ

∥
∥∥
∥
∥

2 (5.2.22)

Some standard matrix algebra shows that the coefficient vector ξ that minimizes
(5.2.22) is given by:

ξ =
(
χHχ +

σ2

ρ2
I
)−1

χHf0 (5.2.23)

and the derivation is complete.
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(equal)

Receive

Transmit

Pre

Data−Npre N0 − 1N0 − Npre − 1 n0

Figure 5.3. Transmission with a cyclic preamble, but no postamble.

5.2.2 Orthogonal Frequency Division Multiplexing

An increasingly popular transmission technique for frequency-selective channels
is the so-called orthogonal frequency division multiplexing (OFDM). OFDM has
received a considerable amount of attention during the last decade. It is also a
transmission technique included in the IEEE 802.11a wireless local area network
standard [van Nee et al., 1999]. An OFDM system uses a preamble that is
equal to the last L symbols of the transmitted block (and hence unknown to the
receiver). It turns out that the complexity of the signal processing associated with
OFDM is low, but that the multipath diversity is lost, i.e., the diversity order of
the system is reduced from nr(L + 1) to nr, as explained in detail in the rest of
this section.

Cyclic Prefix

Suppose that there is no postamble (Npost = 0), but that we use a preamble of
length Npre. Also assume that the symbols in the preamble are equal to the Npre

last elements of the transmitted data string:

s(n) = s(n+ N0), n = −Npre, . . . ,−1 (5.2.24)

Hence, in the present case, data are transmitted for n = −Npre, . . . , N0 − 1 and
received during n = 0, . . . , N0 − 1. The transmission scheme under consideration
is illustrated in Figure 5.3. As we will see, the main appealing feature of the
cyclic prefix is that the linear convolution induced by the propagation channel
h(z−1) is transformed into a circular convolution, which corresponds exactly to a
multiplication in the frequency domain.

With reference to the diversity analysis based on (5.2.2)–(5.2.4), for a system
that uses a cyclic prefix we can easily find an error signal s0(n)−s(n) for which the
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column rank of S0 − S is equal to one. Take, for instance, an arbitrary s(n) 	= 0
for all n, and assuming a symmetric constellation, let s0(n) = −s(n). This gives

s0(n)− s(n) = −2s(n) (5.2.25)

for all n, and the discussion following (5.2.2)–(5.2.4) indicates that the diversity
order can be as low as nr. Indeed, let’s say that s(n) = const. for n = 0, . . . , N0−1
is a feasible choice: then the matrix S0−S corresponding to (5.2.25) has rank one.
This should be compared to the case of known preamble or postamble (see Sec-
tion 5.2.1) where a diversity of order nr(L+1) was achieved. Note that the above
discussion does not really prove that the diversity order cannot be more than nr

for the system under consideration; yet we will see shortly that ML detection gives
a BER that behaves as σ2nr in the high SNR case, and hence that a transmission
scheme with cyclic preambles cannot exploit multipath diversity.

As a further remark, note that for this transmission scheme the signal received
for n = 0, . . . , N0 − 1 is not a sufficient statistic for ML detection; in particular
the samples received during the preamble, as well as some of those for n ≥ N0, are
discarded even though they contain information about the transmitted data. It is
clear that this fact is connected to the loss of multipath diversity.

Transmitted and Received Data

In OFDM, we transmit the following inverse-Fourier-transform encoded data:

x(n) =
1√
N0

N0−1∑

k=0

s(k) exp
(

i
2π
N0

nk

)
, n = 0, . . . , N0 − 1 (5.2.26)

augmented by a cyclic preamble as follows (cf. (5.2.24)):

x(n) = x(n + N0), n = −Npre, . . . ,−1 (5.2.27)

The sinusoids {ei2πnk/N0} are often called subcarriers; hence one symbol s(k) is
transmitted on each subcarrier ei2πnk/N0 . For an observation time of N0, these sub-
carriers are orthogonal and this fact provides a motivation for the name “OFDM.”

The received data vector (of length nr) can be written:

y(n) =
L∑

k=0

hkx(n − k) + e(n)

=
1√
N0

L∑

k=0

N0−1∑

m=0

s(m)hk exp
(

i
2π
N0

(n − k)m
)
+ e(n)

(5.2.28)
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for n = 0, . . . , N0 − 1. Note that the definition of the cyclic prefix in (5.2.27) is
used in (5.2.28) in order to make x(n) well-defined for n < 0, but that the data
received during the cyclic preamble are discarded. In (5.2.28), {e(n)} is a sequence
of noise vectors.

At the receiver we take the Fourier transform of the received data, to get:

z(n) =
1√
N0

N0−1∑

l=0

y(l)e−i 2π
N0

ln

=
1

N0

N0−1∑

l=0

N0−1∑

m=0

L∑

k=0

s(m)hke
i 2π

N0
(l−k)m

e
−i 2π

N0
ln +

1√
N0

N0−1∑

l=0

e(l)e−i 2π
N0

ln

=
1

N0

N0−1∑

l=0

N0−1∑

m=0

L∑

k=0

s(m)hke
−i 2π

N0
(n−m)l

e
−i 2π

N0
km +

1√
N0

N0−1∑

l=0

e(l)e−i 2π
N0

ln

= s(n) ·
L∑

k=0

hke
−i 2π

N0
kn +

1√
N0

N0−1∑

l=0

e(l)e−i 2π
N0

ln

= s(n) · h
(
2π
N0

n

)
+

1√
N0

N0−1∑

l=0

e(l)e−i 2π
N0

ln

(5.2.29)

where we have made use of (5.2.28) and where we have defined

h

(
2π
N0

n

)
=

L∑

l=0

hl exp
(
−i

2π
N0

ln

)
(5.2.30)

To show the fourth equality in (5.2.29), note that the summation over l yields zero
unless m = n. Hence in the summation over m, only the term for which m = n
remains.

Equation (5.2.29) shows that inverse Fourier transformation at the transmit-
ter together with Fourier transformation of the received data make the frequency
selective channel act as a flat fading channel with gain h(2πn/N0) for each data
symbol, or subcarrier. Moreover, it demonstrates that all signal processing associ-
ated with the equalization in an OFDM system can be carried out via fast Fourier
transforms. This fact is one of the major advantages of OFDM compared to direct
transmission as in Section 5.2.1.
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A Matrix-Algebraic Framework

It is instructive to study OFDM in a matrix-algebraic framework. Doing so will
also help us establish a compact and convenient expression for the ML metric
associated with the detection of s(n) given y(n), as well as analyze the performance
of OFDM with receive diversity.

If we let T be an N0 × N0 Fourier matrix whose (k, l)th element is equal to:

T k,l =
1√
N0

exp
(
−i2π

(k − 1)(l − 1)
N0

)
(5.2.31)

we can write the transmitted data in (5.2.26) in a vector form as:

x = THs (5.2.32)

where
x = [x(0) · · · x(N0 − 1)]T (5.2.33)

s = [s(0) · · · s(N0 − 1)]T (5.2.34)

Let Hc be the following nrN0 × N0 matrix:

Hc �

⎡

⎢
⎢⎢
⎢⎢
⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎢
⎣

h0 0 · · · 0 hL · · · h1

h1 h0
. . . . . . hL · · · h2

...
. . . . . . . . .

...
. . . . . . . . . hL

. . . . . . . . . 0

hL
...

0
. . . . . . . . .
. . . 0

0 · · · 0 hL · · · h1 h0

⎤

⎥
⎥⎥
⎥⎥
⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎥
⎦

(5.2.35)

Owing to the structure of the cyclic preamble, the received signal

y =
[
yT (0) · · · yT (N0 − 1)

]T (5.2.36)

can be written as:

y = Hcx + e = HcT
Hs + e (5.2.37)
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The matrix Hc is a block-circulant matrix and hence it can be diagonalized as
follows (see, e.g., [Moon and Stirling, 2000, Chap. 8] or Appendix A.2):

Hc = (TH ⊗ Inr)∆T (5.2.38)

where

∆ =

⎡

⎢
⎢⎢
⎢⎢
⎣

h(0) 0 · · · 0

0 h
(
2π
N0

) . . .
...

...
. . . . . . 0

0 · · · 0 h
(
2π
N0

(N0 − 1)
)

⎤

⎥
⎥⎥
⎥⎥
⎦

(5.2.39)

is an nrN0 × N0 block-diagonal matrix.

ML Detection

The ML detector for OFDM with receive diversity is most easily derived in the
matrix-algebraic framework of the last section. From (5.2.37) we see that the ML
detection of s given y amounts to minimizing the following metric:

∥
∥y − HcT

Hs
∥
∥2 (5.2.40)

Since THT = I, the ML metric can be simplified as follows:

∥∥y − HcT
Hs

∥∥2 =
∥∥y − (TH ⊗ Inr)∆TTHs

∥∥2

= ‖(T ⊗ Inr)y −∆s‖2

=
∥
∥
∥(∆H∆)−1/2∆H(T ⊗ Inr)y − (∆H∆)1/2s

∥
∥
∥
2
+ const.

=
N0−1∑

n=0

∣∣
∣∣
hH(2πn/N0)
‖h(2πn/N0)‖z(n)− ‖h(2πn/N0)‖s(n)

∣∣
∣∣

2

+ const.

=
N0−1∑

n=0

(

‖h(2πn/N0)‖2 ·
∣∣
∣s(n)− ŝ(n)

∣∣
∣
2
)

+ const.

(5.2.41)

where

ŝ(n) � hH(2πn/N0)z(n)
‖h(2πn/N0)‖2

(5.2.42)
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and {z(n)} are nr-vectors defined according to (5.2.29), or equivalently, using
matrix notation

⎡

⎢
⎣

z(0)
...

z(N0 − 1)

⎤

⎥
⎦ � (T ⊗ Inr)y (5.2.43)

Equation (5.2.41) shows that the ML detection of s decouples into N0 easily solved
scalar detection problems for flat channels.

Clearly, ŝ(n) is linear in y and hence it is a circular Gaussian random variable.
We have that

E [ŝ(n)] = s(n)

E
[|ŝ(n)− s(n)|2] = σ2

‖h(2πn/N0)‖2
(5.2.44)

It follows that

ŝ(n) ∼ NC

(
s(n),

σ2

‖h(2πn/N0)‖2
)

(5.2.45)

Therefore, ŝ(n) can be interpreted as the output of a flat fading scalar channel
with SNR:

SNR =
‖h(2πn/N0)‖2

σ2
· E [|s(n)|2] (5.2.46)

By applying Theorem 4.1 (see page 42) with γ2 = ‖h(2πn/N0)‖2, it follows that
a diversity order equal to nr is achieved.

Note that all computations involved in the above algorithms for the equaliza-
tion of an OFDM system can easily be carried out via fast Fourier transforms. The
price paid for this simple receiver structure (as compared to that using a known
preamble and postamble and a Viterbi equalizer) is the loss of multipath diversity,
although multipath diversity can be recovered (to some extent) via coding across
the subcarriers (see Section 8.2.6).

5.3 Summary and Discussion

Receive diversity is implemented in many practical systems. In this chapter, we
have derived optimal (in a maximum-likelihood sense) detection rules for both fre-
quency flat and frequency-selective SIMO channels. For flat fading channels (see
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Section 5.1), we deduced the classical maximum-ratio combining formula and con-
cluded that a diversity order equal to the number of receive antennas (viz. nr) can
be achieved in Rayleigh fading. For frequency-selective channels (see Section 5.2),
we first provided a maximum-likelihood framework for detection using the symbol-
spaced discrete-time model of Chapter 2, and then established conditions under
which the maximum diversity order, viz. nr(L+1) can be achieved. In particular,
we found that a diversity order equal to nr(L + 1) can be achieved if all data are
transmitted in blocks (cf. Section 2.2) and the preambles or postambles are known
to the receiver.

We also studied orthogonal frequency division multiplexing (OFDM) for re-
ceive diversity systems in some detail. The principle of OFDM is fairly simple:
by means of a cyclic preamble and a Fourier-transformation of the transmitted
data, the frequency-selective channel is essentially converted into a set of parallel
flat-fading channels called subcarriers, which are affected by uncorrelated noise
(yet, the fading is not independent on the different subcarriers). Although OFDM
is suboptimal in that it sacrifices the multipath diversity (i.e., it achieves a diver-
sity order equal to nr only), it does have a number of distinct advantages. For
example, provided that the preamble is chosen properly (viz., taken equal to the
last samples of the Fourier-transformed symbol sequence), ML symbol detection
can be accomplished via a single fast Fourier transform; for this reason OFDM
is generally considered to be computationally attractive even for channels with
very long delay spread. A general discussion of OFDM and its advantages and
disadvantages can be found in [May and Rohling, 2001].

The results in this chapter are based on the model in Chapter 2 and the error
probability results of Chapter 4, and they can be viewed as background material
for the rest of the text, which will focus on transmit diversity. Note that the
general focus of this book is on all-digital implementations of antenna diversity
systems and therefore our treatment has omitted a discussion on suboptimal di-
versity combining strategies (such as selection or switched combining). Details
about these topics, along with a more general discussion of diversity combining
can be found in, for example, [Stüber, 2001, Chap. 6] and [Eng et al., 1996].

5.4 Problems

1. Extend the calculations in Section 5.1 to the case where the receiver noise is
spatially colored, i.e.,

e ∼ NC(0,Λ) (5.4.1)

2. Extend the analysis in Section 5.1 to the case in which the fading is correlated,
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that is,
h ∼ NC(0,Υ) (5.4.2)

instead of (5.1.3).

3. Prove that γ∗
−l = γl in (5.2.12)

4. Explain why (5.2.29) does not hold if a fixed preamble is used (as opposed to
a cyclic one).

5. Derive the ML detector for OFDM, along with its error performance, starting
from (5.2.29) and without going via the matrix-algebraic framework.

Hint: Prove first that the noise term in (5.2.29) is white (i.e., independent for
different values of n) and that z(n) is a sufficient statistic for the detection of
s(n).

6. A receive-diversity system with one transmit antenna and two receive anten-
nas transmits BPSK symbols over a frequency-flat Rayleigh fading channel.
Suppose that the two channel gains are zero-mean complex Gaussian random
variables with covariance matrix as follows:

E

[[
h1
h2

]
[
h∗
1 h∗

2

]
]
=

[
1 ρ
ρ∗ 1

]
(5.4.3)

where ρ is a complex number such that |ρ| < 1. Hence, the two channels are
“equally good,” but they are correlated with one another. Assume that the
system uses ML detection.

(a) Determine the Chernoff bound on the average (over the channel) error
probability, as a function of the noise variance σ2 and ρ.

(b) Find the value of ρ that minimizes this error probability bound. Discuss
the result.

7. Study a system operating over a frequency flat channel with one transmit an-
tenna and nr receive antennas. Suppose that a single symbol s is transmitted
and let h be a vector of complex channel gains.

(a) Derive the probability of a detection error (conditioned on h), assuming
ML detection.

(b) Suppose that

h ∼ NC

(
0, ρ2I

)
(5.4.4)
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Derive a bound on average error probability.

(c) Let ρ2 = 1. What happens to the average error probability when the
number of receive antennas grows without bound (nr → ∞)?

(d) Suppose that nr grows without bound, but at the same time the transmit
power is scaled down according to ρ2 = 1/nr. Study the average error
probability when nr → ∞. Compare to the Chernoff bound of the error
probability for an AWGN channel with unit channel gain.



Chapter 6

TRANSMIT DIVERSITY AND

SPACE-TIME CODING

This chapter will take the first step towards exposing the reader to the concept of
transmit diversity. We begin by studying a system where the channel is known to
the transmitter. Next we assume that the channel is unknown at the transmitter
site and show how transmit diversity can be achieved via repeated transmission of
a single symbol, and how such transmit diversity is related to the receive diversity
discussed in the previous chapter. Finally, we provide a more systematic discussion
of space-time coding and also set the framework for the rest of this book. In most
parts of this chapter, we assume a frequency flat channel (frequency selective
channels will be discussed in Chapter 8).

6.1 Optimal Beamforming with Channel Known at Transmitter

As a preparation we shall begin by studying a system with nr ≥ 1 receive and nt >
1 transmit antennas, where both the transmitter and receiver know the propagation
channel. This knowledge about the channel can be used to adapt the weights for
each transmit antenna in such a way that the SNR at the receiver is maximized.
Doing so is sometimes called “beamforming,” although it (like the beamforming in
Section 5.1) may not have the physical interpretation of forming a beam. All the
analysis presented in this section is straightforward; some of it can also be found
in [Ganesan and Stoica, 2001b].

Consider the transmission of a certain information symbol s. Effectively, by
using beamforming, we transmit the following nt-vector:

x = ws (6.1.1)

where w is a weight vector to be chosen by the transmitter. The received signal

79
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vector, of length nr, is equal to:

y = Hws + e (6.1.2)

where H is the nr × nt channel gain matrix, and e is a vector of noise. Assuming
again that the noise is white with variance σ2, and proceeding in a manner similar
to that in Section 5.1, we find that the ML detection of s given y amounts to
minimizing the following metric:

‖y − Hws‖2 = ‖y‖2 − 2Re
{
yHHws

}
+ ‖Hw‖2|s|2

= ‖Hw‖2 ·
∣
∣∣s − wHHHy

‖Hw‖2
∣
∣∣
2
+ const.

= ‖Hw‖2 · |s − ŝ|2 + const.

(6.1.3)

where the constant term does not depend on s and where the quantity

ŝ � wHHHy

‖Hw‖2 ∼ NC

(
s,

σ2

‖Hw‖2
)

(6.1.4)

can be interpreted as the output of an AWGN channel with SNR:

SNR =
‖Hw‖2

σ2
· E [|s|2] (6.1.5)

The BER performance of the ML detector depends only on the SNR in (6.1.5).
Hence, given that the transmitter knows the channel, it can optimize w so as to
maximize the SNR in ŝ (or essentially equivalent, minimize the BER). For this
optimization to be meaningful we must constrain the transmit power, otherwise
the problem would yield an unbounded solution (an arbitrarily high SNR can be
achieved by choosing w large enough).

Let us maximize the SNR subject to the constraint that the norm of w is
bounded by a constant γ2, i.e.:

‖w‖2 ≤ γ2 (6.1.6)

If E[|s|2] = 1, this assumption corresponds to requiring that the total transmit
power (for all antennas) is bounded by γ2. In mathematical terms, the optimiza-
tion problem takes on the following form:

max
w

‖Hw‖2

s.t. ‖w‖2 ≤ γ2
(6.1.7)
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To solve this maximization problem note that

‖Hw‖2
‖w‖2 =

wHHHHw

wHw
≤ λmax(HHH) (6.1.8)

with equality if w is proportional to the eigenvector of HHH that corresponds to
the largest eigenvalue (see, e.g., [Horn and Johnson, 1985, Th. 4.2.2]). Hence,
the wopt that solves (6.1.7) is the eigenvector of HHH that corresponds to the
largest eigenvalue and is normalized such that ‖wopt‖2 = γ2. The resulting SNR
is

SNRopt =
γ2

σ2
λmax(HHH) · E [|s|2] (6.1.9)

The special case of nr = 1 is treated in the Example 6.1 below. In the general case
of nr ≥ 1, we can bound the SNR in (6.1.9) as follows:

SNRopt =
γ2

σ2
λmax(HHH) · E [|s|2] ≥ γ2

ntσ2
‖H‖2 · E [|s|2] (6.1.10)

Suppose that the matrix H has independent zero-mean Gaussian entries (i.e.,
that the channel is Rayleigh fading), and that the transmitter chooses a new
optimal transmit weight vector w for each channel realization. Then application
of Theorem 4.1 (see page 42) (with γ2 = ‖H‖2) together with (6.1.10) shows
that the BER of the system decays as σ2ntnr when σ2 → 0. Hence, we can say
that a diversity of order ntnr is achieved (although the term “diversity order”
appears to be more rarely used in the presence of channel state information at the
transmitter).

Example 6.1: Beamforming for MISO-systems.
In the special case of nr = 1, the optimization of (6.1.7) simplifies somewhat since
in that case H becomes a row-vector hT . By the Cauchy-Schwarz inequality, it
holds that

|hTw|2 ≤ ‖h‖2‖w‖2 = γ2‖h‖2 (6.1.11)

with equality if and only if w is proportional to h∗; applying the constraint on the
transmit power, we find that

wopt = γ · h∗

‖h‖ (6.1.12)
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RX

TX

1

nt

Figure 6.1. A transmit diversity system with nt ≥ 1, nr = 1.

The resulting SNR is

SNRopt =
|hTwopt|2

σ2
· E [|s|2] = γ2

σ2
(hHh)2

‖h‖2 · E [|s|2] = γ2

σ2
‖h‖2 · E [|s|2]

(6.1.13)

If the propagation coefficients are i.i.d. Gaussian random variables as in the pre-
vious discussion, and the transmitter adapts w for each realization of h, it follows
immediately from Theorem 4.1 and (6.1.13) that the BER decays as σ2nt when σ2

decreases. Moreover, if the total radiated power from all nt antennas is fixed to
unity, i.e., γ2 = 1, the SNR in (6.1.13) becomes

SNR =
‖h‖2
σ2

· E [|s|2] (6.1.14)

which is equal to the corresponding SNR for receive diversity (5.1.10). Hence, if
the transmitter knows the channel, it is easy to reproduce the performance of a
receive diversity system by using transmit diversity.

6.2 Achieving Transmit Diversity

Let us now study the case when the channel is unknown to the transmitter but
known to the receiver, and investigate whether it is possible to achieve transmit
diversity by using beamforming techniques. First suppose that the transmitter
simply chooses a constant beamforming vector w (independent of H), and trans-
mits w · s as in the preceding Section 6.1. To analyze the performance of the
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system we observe that for a fixed w, and provided that H has i.i.d. Gaussian
elements with variance ρ2, Hw in (6.1.2) will have a Gaussian distribution:

Hw ∼ NC(0, ρ2‖w‖2I) (6.2.1)

Consequently, the SNR in (6.1.5) is distributed in the same way as if we had
a rank-one channel with complex gain vector equal to Hw; hence the diversity
order achieved is equal to nr, and consequently no transmit diversity is gained
(cf. Theorem 4.1).

In the absence of channel state information at the transmitter, it is possible
to achieve transmit diversity by transmitting the same symbol s during N time
epochs using different transmit weight vectors {wn}N−1

n=0 . Let

W = [w0 · · · wN−1] (6.2.2)

Then the “code matrix” associated with this transmission technique is of dimension
nt × N and given by:

X = W · s (6.2.3)

The received signal is the following matrix of dimension nr × N :

Y = HX + E = HW s + E (6.2.4)

where E is an nr × N matrix of noise. The model (6.2.4) is of the same form
as that studied in Chapter 4 and hence application of Theorem 4.2 shows that
transmit diversity is achieved as long as W has rank nt. Clearly,

rank {W } = rank
{
WHW

} ≤ nt (6.2.5)

and equality is only possible if N ≥ nt. Therefore we expect that to achieve full
transmit diversity, we need to spread the energy from one information symbol
over at least as many time intervals as there are transmit antennas. Note that
Theorem 4.2 does not prove that rank {W } = nt is a necessary condition to
achieve transmit diversity: owing to the inequality in (4.2.9), Theorem 4.2 only
establishes the sufficiency of the previous condition. However, we will see in the
next subsection that the exponent of the error rate behaves as nr · rank

{
WHW

}

and therefore that N ≥ nt is a necessary condition to achieve diversity.

6.2.1 The ML Detector

Next we shall address the question of choosing the optimal matrix W (in an error
probability sense). However, before doing so, we derive the maximum-likelihood
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detector of s given Y and analyze some of its properties. The ML detection of s
given Y amounts to minimizing

‖Y − HW s‖2 = ‖Y ‖2 + |s|2‖HW ‖2 − 2Re
{
Tr

{
HWY Hs

}}

= ‖HW ‖2 · |s − ŝ|2 + const.
(6.2.6)

where the constant term does not depend on s and where

ŝ �
Tr

{
WHHHY

}

‖HW ‖2 ∼ NC

(
s,

σ2

‖HW ‖2
)

(6.2.7)

Clearly, ŝ has the same AWGN-interpretation as before, and the SNR in ŝ is equal
to:

SNR =
‖HW ‖2

σ2
· E [|s|2] (6.2.8)

Under the assumption of an i.i.d. Gaussian channel as before, we have that

vec(HW ) = (W T ⊗ I) vec(H) ∼ NC

(
0, ρ2(W TW ∗ ⊗ I)

)
(6.2.9)

and hence by Theorem 4.1 (see page 42) it follows that a diversity of at least order
nr · rank{WHW } is achieved (cf. the remark following (6.2.5)).

6.2.2 Minimizing the Conditional Error Probability

Suppose that s0 is the true transmitted symbol. Then the probability that the
ML detector takes an incorrect decision in favor of a wrong symbol s �= s0 is, for
a given H (see Theorem 4.2):

P (s0 → s) = Q

(√
‖HW ‖2

2σ2
· |s − s0|2

)

(6.2.10)

The above error probability is a decreasing function of the SNR in (6.2.8). Hence,
choosing W to minimize P (s0 → s) is equivalent to choosing W to maximize the
SNR.

Let us consider the maximization of the SNR with respect to W , and subject
to the following elemental power constraint:

λmax{W WH} ≤ γ2

nt

(6.2.11)
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In words, the constraint in (6.2.11) states that the transmitted power, in any
particular direction, is bounded by γ2. See, for instance, [Stoica and Ganesan,
2002a] for more interpretations and details on the eigenvalue constraint in (6.2.11);
similar constraints have also been used and are discussed in [Scaglione et al.,
2002]. In this section, this constraint is chosen for mathematical convenience. It
implies, but is not equivalent to, the condition that the total transmitted power
accumulated over the N time intervals is less than γ2, i.e., that

‖W ‖2 = Tr
{
WWH

} ≤ γ2 (6.2.12)

The resulting optimization problem can be formulated as:

max
W

‖HW ‖2

s.t. λmax{W WH} ≤ γ2

nt

(6.2.13)

We have that

‖HW ‖2 = Tr
{
HWWHHH

} ≤ ‖H‖2 · λmax(W WH) ≤ ‖H‖2 · γ2

nt

(6.2.14)

with equality in the first inequality if WWH is proportional to an identity matrix.
It follows that the optimal W is given by any W that satisfies

WWH =
γ2

nt
I (6.2.15)

In words, (6.2.15) states that we should distribute the transmitted power uniformly
in space.

The SNR in (6.2.8) corresponding to the choice of W in (6.2.15) is given by:

SNRopt =
γ2

nt

‖H‖2
σ2

· E [|s|2] (6.2.16)

When nr = 1, the SNR in (6.2.16) is exactly a factor nt less than the SNR in
(6.1.13) corresponding to the case when the transmitter knows the channel, pro-
vided that the total transmit power is the same in both cases. For the case nr > 1,
the difference in SNR between an informed and an uninformed transmitter can be
less than a factor nt (cf. (6.1.10)). The difference in the achieved SNR between
an informed and an uninformed transmitter is sometimes called array gain. The
array gain can be understood intuitively as follows: a transmitter that knows the
channel can “steer a beam” in the direction of the receiver, but this is not possible
if the channel is unknown. In the latter case, some energy will always be wasted
in the directions where the receiver is not present.
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6.2.3 Minimizing the Average Error Probability

We next minimize the average (over H) error probability under the constraint
(6.2.12), which is more commonly used than (6.2.11).

If we assume as before that

vec(H) ∼ NC(0, ρ2I) (6.2.17)

then the average error probability can be bounded by using Theorem 4.2:

EH[P (s0 → s)] ≤ |WWH |−nr |s − s0|−nr

( ρ2

4σ2
)−nrnt

(6.2.18)

Clearly, a diversity order equal to nrnt is achieved as long as W has rank nt.
Let us minimize the average error probability with respect to W under the power
constraint (6.2.12):

‖W ‖2 = Tr
{
WWH

} ≤ γ2 (6.2.19)

We have that

|WWH | ≤
( 1

nt
Tr

{
WWH

})nt ≤
(γ2

nt

)nt

(6.2.20)

with equality if and only if W is unitary and satisfies:

WWH =
γ2

nt
I (6.2.21)

which is the same as the optimality result (6.2.15) derived by minimizing the
conditional error probability (under the elemental power constraint).

6.2.4 Discussion

Under an elemental power constraint, the conditional error probability is min-
imized by (6.2.15) and so is the average error probability under a total power
constraint. One possible choice of W that satisfies (6.2.15) is

W =
γ√
nt

I (6.2.22)

With this choice of W , the transmission scheme becomes equivalent to spatial
cycling, i.e., the symbol s is transmitted during time interval n via antenna number
n for n = 1, . . . , nt and the remaining antennas are quiet. This transmission scheme
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does achieve transmit diversity, yet in a crude way. Its main problem is that only
one complex symbol is transmitted during N = nt time intervals and hence the
effective data rate is R = 1/N = 1/nt.

To conclude, we have found that the task of achieving transmit diversity, with-
out any requirements on transmission rate, is quite easy. The major question is
whether we can find a more sophisticated transmission scheme with a higher rate
than 1/nt that achieves transmit diversity and at the same time keeps the decod-
ing complexity low. This question has motivated the last decade’s research efforts
in MIMO communication theory, and a systematic approach to this problem leads
to the concept of space-time coding.

6.3 Space-Time Coding

From the discussion in Section 6.2 we know that if the transmitter does not know
the channel, it is necessary to code across both space and time to achieve transmit
diversity. We saw how diversity could be achieved by transmitting one symbol s
during a number of time intervals equal to that of transmit antennas; however,
the rate of the so-obtained scheme was equal to R = 1/nt. This observation leads
inevitably to the question: can we spread symbols over space and time in a spirit
similar to that in Section 6.2, but transmitting several symbols at the same time?

The question asked in the previous paragraph has led to the area that is now
referred to as space-time coding. Many researchers have made important contribu-
tions to this area. Although an exhaustive list of all of them would be quite long, in
the bibliography of this book (see page 264) we have tried to list a few often cited
contributions. In this section, we will give a general overview of space-time coding
methods. Of these methods, one particularly interesting technique (namely linear
space-time block coding) will become the major topic of all subsequent chapters
in this book.

6.3.1 Alamouti’s Space-Time Code

One of the first space-time codes is due to Alamouti [Alamouti, 1998], who
studied the case of two transmit antennas (nt = 2) and suggested to simultaneously
transmit ns = 2 complex symbols s1 and s2 during N = 2 time intervals by
transmitting the following matrix:

X =
[
s1 s∗2
s2 −s∗1

]
(6.3.1)

The matrix X is transmitted via the two transmit antennas as described in Sec-
tion 2.1. For the moment, we ignore any scaling factor needed to normalize the
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transmit power. Note that the rate of the Alamouti code is equal to R = 2/2 = 1
(which is double the rate of the technique in Section 6.2).

To understand the benefits of Alamouti’s code, we assume for simplicity of the
discussion that we have one receive antenna, i.e., nr = 1. In this case, the MIMO
channel matrix H in Section 2.1 becomes a row vector, which we denote by

hT =
[
h1 h2

]
(6.3.2)

Let

y̌ =
[
y̌1
y̌2

]
(6.3.3)

be the received signal during the two time intervals (the reason for the notation (̌·)
is that we will later take the complex conjugate of y̌2, and denote the so-obtained
signal vector by y). This received signal can be written (cf. Section 2.1):

y̌T = hTX + ěT (6.3.4)

where ě is a vector of white noise with variance σ2:

ě ∼ NC(0, σ2I) (6.3.5)

Now let

y �
[
y̌1
y̌∗2

]
(6.3.6)

be the received signal but with the second element complex-conjugated and let

s = [s1 s2]T (6.3.7)

Also, define the following matrix:

F �
[

h1 h2
−h∗

2 h∗
1

]
(6.3.8)

Then from the above equations it follows that we can write

y = Fs + e (6.3.9)

where

e �
[
e1
e2

]
�

[
ě1
ě∗2

]
∼ NC(0, σ2I) (6.3.10)
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is white noise. The ML detection of s1 and s2 amounts to minimizing:

‖y − Fs‖2 = ‖y‖2 + ‖Fs‖2 − 2Re
{
sHFHy

}
(6.3.11)

It is easy to see that F in (6.3.8) enjoys the following unitary property:

FHF = ‖h‖2 · I (6.3.12)

Let us define:

ŝ �
[
ŝ1
ŝ2

]
� 1

‖h‖2F
Hy = s +

1
‖h‖2F

He (6.3.13)

Then the metric in (6.3.11) can be written:

‖y − Fs‖2 = ‖h‖2 · ‖s − ŝ‖2 + const. (6.3.14)

where the constant term does not depend on s. Equation (6.3.14) shows that
the ML detection of s1 and s2, given y, decouples into two independent scalar
detection problems. Moreover, since

E

[
1

‖h‖4F
HeeHF

]

=
σ2

‖h‖2 I (6.3.15)

the noise term in (6.3.13) is white and consequently

ŝ ∼ NC

(
s,

σ2

‖h‖2 I
)

(6.3.16)

Equation (6.3.16) shows not only that the space-time channel decouples into
two independent scalar channels, but also that for a given h, the linear processing
in (6.3.13) transforms the space-time channel into two parallel and independent
AWGN channels. The SNR in each sub-channel is equal to

SNR =
‖h‖2
σ2

· E [|sn|2
]

(6.3.17)

and hence it follows from Theorem 4.1 (see page 42) that a diversity of order two
is achieved in Rayleigh fading. Therefore, for the case of nt = 2 transmit antennas
and nr = 1 receive antenna, the Alamouti code obtains the same diversity benefit
as if we instead had a system with one transmit and two receive antennas.
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By comparing (6.3.17) to the SNR for a two-branch receive diversity system
(5.1.10) and to the SNR in (6.1.14) for transmit diversity with channel state in-
formation at the transmitter (and with nr = 1), we find that these three SNR
expressions are equal to one another. Hence, the performance of a receive diver-
sity system, that of transmit beamforming and that of the Alamouti scheme are
equal. However, using the Alamouti code as described in this section we transmit
with power E

[|sn|2
]
via each antenna, and hence the total transmission power

is effectively doubled compared to the receive diversity system, and compared to
the beamforming system. We therefore conclude that relative to a receive diversity
system, as well as relative to a system that uses optimal transmit beamforming, the
Alamouti code (using the same total transmit power) provides the same diversity
order, but has a 3 dB loss in error performance.

If we normalize the transmit power so that the total transmitted energy per
information symbol is equal to γ2, the SNR per sub-channel becomes:

SNR =
γ2

2
· ‖h‖

2

σ2
· E [|sn|2

]
(6.3.18)

This formula is valid for a general number of receive antennas nr (we leave the
proof to the reader), and it is directly comparable to (5.1.10) (for receive diversity),
(6.1.9) and (6.1.14) (for beamforming with perfect channel state information at the
transmitter), and (6.2.16) (for transmit diversity without channel state information
at the transmitter).

Extending the receiver structure of the Alamouti code to more than one re-
ceive antenna is straightforward: this extension will follow as a special case of
the discussion in Chapter 7. A more interesting question than this extension is
whether it is possible to generalize the Alamouti code to more than two transmit
antennas. The answer to this question is orthogonal STBC, which was introduced
by [Tarokh et al., 1999a]. In this text, OSTBC will be discussed in Section 7.4.

6.3.2 Space-Time Block Coding (STBC)

We have already defined the concept of space-time block coding (STBC) implicity
in Chapter 2. In its most general form, STBC can seen as a way of mapping a set
of ns complex symbols {s1, . . . , sns} onto a matrix X of dimension nt ×N that is
transmitted as described in Chapter 2. The mapping

{s1, . . . , sns} → X (6.3.19)

may in principle take on any form.
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6.3.3 Linear STBC

Linear space-time block codes choose the mapping (6.3.19) to be linear in the
symbols {sn}. Specifically, if {An,Bn} is a set of fixed matrices, X is formed
according to:

X =
ns∑

n=1

(s̄nAn + is̃nBn) (6.3.20)

All transmission techniques discussed so far in this chapter can be interpreted
as linear STBCs. Linear STBC is an important subclass of space-time coding
techniques, which will form the focus of the rest of this book.

6.3.4 Nonlinear STBC

Although we will see that linear STBCs have quite appealing properties from both
a performance and implementation point of view, they constitute only a small
subclass of the possible mappings {s1, . . . , sns} → X. The current knowledge
on nonlinear STBCs appears to be rather limited but there are already a few
contributions available. For instance, [Sandhu et al., 2002] suggests to first
obtain a set of P complex numbers {φp} via a nonlinear function

{s1, . . . , sns} → {φ1, . . . , φP } (6.3.21)

and then form X in a fashion similar to (6.3.20):

X =
P∑

n=1

(φ̄nAn + iφ̃nBn) (6.3.22)

As the topic of non-linear STBC appears to be little understood, it will not be
treated further in this text.

6.3.5 Space-Time Trellis Coding

Space-time trellis coding (STTC) constitutes one of the first proposed and studied
classes of space-time codes. In a space-time trellis coding scheme, a stream of data
s(n) is encoded via nt convolutional encoders (or via one convolutional encoder
with nt outputs) to obtain nt streams x1(n), . . . , xnt(n). These nt streams are then
transmitted via the nt transmit antennas. This is illustrated in Figure 6.2.
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CC

CC

s(n)

x1(n)

xnt(n)

TX 1

TX nt

Figure 6.2. Space-time trellis coding. Here CC stands for convolutional coding.

Design Criteria for Space-Time Trellis Codes

Neglecting the preambles and postambles (cf. Section 2.2), the transmitted data
matrix in a STTC scheme can be written as:

X =

⎡

⎢⎢
⎣

· · · x1(n) x1(n + 1) · · · x1(n + l) · · ·
· · · x2(n) x2(n + 1) · · · x2(n + l) · · ·
· · · · · · · · · · · · · · · · · ·
· · · xnt(n) xnt(n + 1) · · · xnt(n + l) · · ·

⎤

⎥⎥
⎦ (6.3.23)

According to the results in Chapter 4, the performance of a space-time trellis code
is related to the eigenvalues and the rank properties of the difference between pairs
of different code matrices formed as in (6.3.23). The design of trellis codes is a
relatively hard problem; some codes were first handcrafted in [Tarokh et al.,
1998], and more systematic studies can be found in [Blum, 2002], [Gamal and
Hammons, Jr., 2002]. In principle, the detection of a space-time trellis code
requires a ML sequence detection algorithm, which is commonly implemented via
the Viterbi algorithm. The complexity of such an algorithm grows exponentially
with the memory length of the trellis code, and some authors have argued that
space-time trellis are computationally rather burdensome.

It is outside the scope of this book to provide a detailed treatment of space-
time trellis codes and their design. However, in a certain sense, it can be argued
that the matrix X associated with STTC can be seen as a wide STBC matrix
and that STTC and STBC therefore are embodiments of the same ideas. This
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TX

Delay

s(n)

Figure 6.3. Delay diversity.

is certainly true at least to the extent that all analysis techniques (in particular
including those in Chapter 4) are applicable to STBC as well as to STTC.

Delay Diversity (DD)

A special case of trellis coding is delay diversity (DD). We describe DD only for
nt = 2 transmit antennas, although the idea is in principle applicable to any
number of transmit antennas. For DD, the first convolutional encoder is absent,
and the second is simply replaced by a time delay. This means that the first
antenna transmits the bitstream (or symbol stream) {s(n), s(n + 1), . . .} whereas
the second antenna transmits the same stream delayed by D symbol intervals:
{s(n − D), s(n − D + 1), . . .}. Therefore the transmitted data are given by:

x1(n) =s(n)
x2(n) =s(n − D)

(6.3.24)

where the delay D is a constant (see Figure 6.3).
Delay diversity as a means of achieving multipath and transmit diversity simul-

taneously was proposed by [Wittneben, 1991]. Delay diversity is the simplest
(and perhaps the first proposed) member of the class of space-time trellis codes,
and it is relatively easy to understand intuitively and analyze. It can be used
directly on a frequency-selective channel; therefore we assume such a channel in
the rest of this section. If h1(z−1) and h2(z−1) denote the two nr-vector valued
FIR filters corresponding to the channel impulse response between the two trans-
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mit antennas and the nr receive antennas, respectively, the receiver will see an
effective channel of length L + D + 1:

he(z−1) = h1(z−1) + z−Dh2(z−1) (6.3.25)

Therefore equalization for the DD scheme requires an MLSD with memory length
L + D + 1, which can be computationally burdensome.

The coefficient vector associated with he(z−1) has a length of nr(L + D + 1)
and possesses the following structure:

he =
[

h1
0nrD×1

]
+

[
0nrD×1

h2

]
(6.3.26)

Provided that the covariance matrix corresponding to he in (6.3.26) has full rank,
the system is equivalent to a SIMO system with one transmit antenna and nr

receive antennas operating on a channel with L+D + 1 not fully correlated taps.
Hence, assuming that the receiver knows the preamble or postamble, the analysis
in Section 5.2.1 shows that a diversity of order nr(L+D + 1) can be achieved. A
necessary condition for the covariance matrix of he to have full rank is that D ≤ L+
1 (indeed, if D > L+1 then the vector he would contain zero elements); therefore,
the maximum achievable diversity order with DD is 2nr(L+1). Provided that this
necessary condition holds, a sufficient condition is that h1 and h2 are independent
and that the two covariance matrices associated with h1 and h2 both have full
rank. The diversity order of DD can also be established in the block-transmission
framework of Section 2.2, but we defer doing so to Chapter 8 (see Example 8.1 on
page 131) where we discuss transmit diversity for frequency selective channels in
a more systematic manner.

6.4 Summary and Discussion

While receive diversity (see Chapter 5) is a fairly mature technique, transmit di-
versity is an emerging topic. This chapter has introduced the concept of transmit
diversity (for flat fading channels) from first principles. In Section 6.1 we studied
optimal strategies for a transmitter that knows the channel perfectly; we found
that the best scheme is to weigh the signal associated with each transmit antennas
in a fashion similar to matched filtering, or maximum-ratio combining (cf. Sec-
tion 5.1). Next, in Section 6.2 we went on to analyze the best transmission scheme
for a transmitter with no knowledge of the propagation channel, given that there
are no constraints on the information rate. We found that the error probability
is minimized when the transmitted matrix X is proportional to a semi-unitary
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matrix. This is intuitively appealing since such a transmission scheme effectively
sends uncorrelated streams with the same power via all antennas, which roughly
speaking does not favor any given direction in space.

The problem of simultaneously achieving optimum error performance (as con-
sidered in Section 6.2) and maximal information rate leads to the concept of space-
time coding, which was introduced in Section 6.3. In that section, we explained
the general concept of space-time block codes and space-time trellis codes. Two
special schemes that have received some attention due to their simplicity, namely
delay diversity and Alamouti’s code, were explained in some detail. A large and
general class of space-time codes briefly introduced here, namely linear space-time
block codes, will be the main topic of Chapter 7.

Most results in this chapter are based on the model in Section 2.1 and the
error probability formulas in Chapter 4, and they are of a fundamental nature.
These results, which will be implicitly used in the rest of the text, also relate to
the discussion in Chapter 5 in that, to a large extent, the performance of receive
diversity can be reproduced by using transmit diversity.

6.5 Problems

1. In Section 6.3.5, suppose that h1 and h2 are independent and that the two
covariance matrices associated with h1 and h2 both have full rank. Also
assume that D ≤ L + 1. Show that E[heh

H
e ] (with he defined as in (6.3.26))

has full rank.

2. Prove Equations (6.1.10) and (6.2.14).

3. Consider a system with nr receive antennas and two transmit antennas, that
transmits BPSK symbols with rate one. Assume that the channel matrix H
has i.i.d. Gaussian elements. Use Monte-Carlo simulation to plot the BER for
nr = 1, 2, 3 using

(a) optimal beamforming with channel knowledge at the transmitter (as in
Section 6.1), and

(b) the Alamouti code.

Discuss the result.

4. Assume that the Alamouti code is implemented in a system, but that during
the implementation, the complex conjugates are “forgotten” and the code
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matrix

X =
[
s1 s2
s2 −s1

]
(6.5.1)

is transmitted instead. Suppose that s1 and s2 are complex symbols in general.

(a) Give the ML rule for detection. Does the symbol detection decouple?

(b) Can the code be used to achieve transmit diversity?

5. Consider an OFDM system with one transmit and one receive antenna. As-
sume that the propagation channel has at least two independently fading taps.
Suppose that a reduction of the transmission rate with 50% would be accept-
able, provided that we could find a simple modification of the transmission
scheme that achieves a multipath diversity of order two. Suggest a method
to accomplish this goal.

6. Consider the minimization of the error probability for a fixed H in Sec-
tion 6.2.2. Explain why it is unfeasible to carry out the minimization subject
to the power constraint (6.2.12) instead of the eigenvalue constraint (6.2.11)
that we used in the text.

7. Consider a system where neither the transmitter nor the receiver knows the
channel H , and suppose that we want to transmit one complex symbol s.

(a) Suppose that a fixed matrix W is chosen, and that the matrix X = s·W
is transmitted (as in Section 6.2). Is it possible to choose W such that
the error probability goes to zero as SNR→ ∞? If yes, find such a matrix
W . If no, explain why it is impossible.

(b) Suppose that instead we let the transmitted matrix have the following
structure:

X =
[
I s · W ]

(6.5.2)

Find a condition on the matrix W for which the error rate (corresponding
to ML detection) goes to zero as SNR→ ∞. Can you formulate a criterion
on W that attempts to minimize the error probability?
Hint: The discussion in Section 4.2.3 may be useful.



Chapter 7

LINEAR STBC FOR FLAT FADING

CHANNELS

The class of linear space-time block codes is the major category of space-time codes
that we will study in this book. Linear STBC have a relatively simple structure:
the transmitted code matrix is linear in the real and imaginary parts of the data
symbols, or equivalently, in the symbols and their complex conjugates. The present
chapter offers a general treatment of linear STBC for frequency flat channels.

7.1 A General Framework for Linear STBC

An STBC code matrix takes on the following form:

X =
ns∑

n=1

(s̄nAn + is̃nBn) (7.1.1)

where {s1, . . . , sns} is a set of symbols to be transmitted, and {An,Bn} are fixed
(in general complex-valued) code matrices of dimension nt×N . Using an encoding
as in (7.1.1), we transmit ns complex symbols over N time intervals, and hence
the transmission rate is equal to:

R =
ns

N
(7.1.2)

Note that X is linear in {s̄n, s̃n}, but in general it cannot be written as a
linear function of only the complex symbols {sn}. Also, note that the set {X} of
matrices that have the structure (7.1.1) is identical to the set of matrices that are
formed according to

X =
ns∑

n=1

(snǍn + s∗nB̌n) (7.1.3)

97
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for code matrices {Ǎn, B̌n} that satisfy:

Ǎn =
An + Bn

2

B̌n =
An − Bn

2

(7.1.4)

To see this, note that for any complex number sn, we have that

s̄nAn + is̃nBn =
sn + s∗n

2
An +

sn − s∗n
2

Bn

=sn ·
(An + Bn

2

)
+ s∗n ·

(An − Bn

2

) (7.1.5)

In this book, we will use the definition in (7.1.1) instead of that in (7.1.3), although
both formulations have been used in the literature.

Because of its simple appearance the structure in (7.1.1) is intuitively appeal-
ing, and the class of such linear codes is quite large. It includes as a special
instance the Alamouti code in Section 6.3.1. Of course, the main problem con-
nected to linear STBC is the design of matrices {An,Bn} that possess certain
desired properties.

Let

s̄ �
[
s̄1 · · · s̄ns

]T

s̃ �
[
s̃1 · · · s̃ns

]T

s′ =
[
s̄
s̃

] (7.1.6)

and

F a �
[
vec(HA1) · · · vec(HAns)

]

F b �
[
i vec(HB1) · · · i vec(HBns)

]

F =
[
F a F b

]
(7.1.7)

Then the received space-time signal corresponding to X for a flat fading channel
can be written as:

y = vec(Y ) = vec(HX + E) = F as̄ + F bs̃ + e = Fs′ + e (7.1.8)

where e = vec(E). Expressed differently,

y′ = F ′s′ + e′ (7.1.9)
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where

y′ =
[
ȳ
ỹ

]
(7.1.10)

and

F ′ =
[
F̄

F̃

]
=
[
F̄ a F̄ b

F̃ a F̃ b

]
(7.1.11)

Also,

e′ =
[
ē
ẽ

]
(7.1.12)

is a vector of real-valued white Gaussian noise whose elements have variance σ2/2.
Therefore the problem of detecting the transmitted data s given y amounts to

minimizing the metric

‖Y − HX‖2 = ∥∥y − Fs′
∥∥2 =

∥∥y′ − F ′s′
∥∥2 (7.1.13)

This is an important minimization problem to which we will return several times
in this text.

Example 7.1: Transmission of a single symbol.
The simplest example of a linear STBC is perhaps the transmission technique
considered in Section 6.2. In this case, we simply have

X = W · s (7.1.14)

for some constant matrix W of size nt × N . Hence ns = 1 and

A1 = W

B1 = W
(7.1.15)

in (7.1.1).

7.2 Spatial Multiplexing

A more practical simple instance of linear STBC is what we will refer to as spatial
multiplexing. In a strict sense, spatial multiplexing is not a space-time coding tech-
nique. Even so, this transmission technique can be interpreted in the framework
of linear STBC.
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Different spatial multiplexing schemes have been developed by, for example,
[Foschini, Jr., 1996]. Here we describe only a simple variant that can be inter-
preted as a special case of the linear STBC in (7.1.1) by setting N = 1, ns = nt

and choosing {An,Bn} equal to the nth column of the nt × nt identity matrix.
Thereby, nt symbols are transmitted simultaneously via the nt transmit antennas.
The transmitted matrix at a given time instant reduces to the following column
vector:

X =

⎡

⎢
⎣

s1
...

sns

⎤

⎥
⎦ (7.2.1)

Since no coding over time is performed, spatial multiplexing does not achieve
transmit diversity (cf. the discussion in Section 6.2). Clearly, spatial multiplexing
achieves a data rate of R = ns = nt; however, like for general linear STBC, the
associated symbol detection is rather complex (see Section 9.1.3).

7.3 Linear Dispersion Codes

Space-time codes with the general linear structure (7.1.1) have been studied by
many authors and they have been given other names than “linear STBC.” In
[Hassibi and Hochwald, 2002b], linear STBC was studied in the context of
maximizing (with respect to the matrices {An,Bn}) the mutual information be-
tween the transmitter and receiver and the resulting codes were given the name
“linear dispersion” codes.

From (7.1.9) along with the discussion in Section 3.1 it follows that the average
(over the channel H) mutual information between s and the received data y
(assuming that the receiver knows the channel H perfectly) is equal to

1
2
EH

[
log2

∣∣
∣I +

2
σ2

F ′TF ′
∣∣
∣
]
=
1
2
EH

[
log2

∣∣
∣I +

2
σ2

(F̄ T
F̄ + F̃

T
F̃ )
∣∣
∣
]

=
1
2
EH

[
log2

∣
∣∣I +

2
σ2

Re
{
FHF

}∣∣∣
] (7.3.1)

assuming that the elements of s′ are i.i.d. zero-mean Gaussian with variance one,
and that the elements of e′ are i.i.d. Gaussian with variance σ2/2. In [Hassibi and
Hochwald, 2002b] it was suggested to optimize (7.3.1) over the set of {An,Bn}
subject to a power constraint; this optimization problem was solved numerically in
the cited article. The so-obtained code matrices satisfy an information theoretic
optimality criterion that should make these codes useful for high-rate systems.
However, the design criterion (7.3.1) does not provide any explicit guarantee that
the code has full diversity.
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Instead of optimizing {An,Bn} via an information-theoretic criterion (like in
[Hassibi and Hochwald, 2002b]), it is possible to optimize {An,Bn} using
an approach that attempts to minimize the error probability. Results along these
lines can be found in, for instance, [Heath and Paulraj, 2002], [Heath et al.,
2001a].

7.4 Orthogonal STBC

Orthogonal STBC is an important subclass of linear STBC, that will be the
main topic for most of the remaining part of this book. As we will see in this
section, OSTBC guarantees that the (coherent) ML detection of different sym-
bols {sn} is decoupled, and at the same time achieves a diversity order equal to
nrnt. For two transmit antennas, OSTBC along with its various extensions to
ISI channels (see Chapter 8) is currently being considered as a means for improv-
ing the performance of wireless local area networks [Liu et al., 2001b], GSM
[Lindskog and Paulraj, 2000], and enhanced data rates for GSM evolution
(EDGE) [Coupechoux and Braun, 2000]. Also, the simplest form of OSTBC,
namely the Alamouti code, has been adopted in the third generation cellular stan-
dard W-CDMA [Derryberry et al., 2002].

OSTBC is a linear space-time block code that has the following unitary prop-
erty:

XXH =
ns∑

n=1

|sn|2 · I (7.4.1)

This property of OSTBC is the main reason for the name it bears. Note that the
identity matrix on the right hand side of (7.4.1) could be scaled by an arbitrary
constant factor.

The design criterion (7.4.1) can be motivated and derived in a number of differ-
ent ways. The original derivation of OSTBC is due to [Tarokh et al., 1999a],
who studied the error performance associated with unitary matrices X. More
recently, [Ganesan and Stoica, 2001a], [Wang and Xia, 2002] streamlined
the derivations of many of the results associated with OSTBC and established an
important link to the theory of orthogonal and amicable orthogonal designs. In
this text we will first prove that (7.4.1) guarantees that the symbol detection is de-
coupled. Next, we will establish a necessary and sufficient condition on {An,Bn}
for (7.4.1) to hold. In Section 7.4.1 we will provide a link to the general frame-
work for ML detection of STBC discussed above in Section 7.1. Section 7.4.2 gives
an error performance analysis of OSTBC, and the following subsections discuss
various optimality properties of OSTBC.
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To understand why the code matrices {X} that are proportional to unitary
matrices guarantee that the detection of {sn} is decoupled, let us study the ML
metric for symbol detection. If X satisfies (7.4.1), then:

‖Y − HX‖2
=‖Y ‖2 − 2ReTr

{
Y HHX

}
+ ‖HX‖2

=‖Y ‖2 − 2
ns∑

n=1

ReTr
{
Y HHAn

}
s̄n + 2

ns∑

n=1

ImTr
{
Y HHBn

}
s̃n + ‖H‖2 · ‖s‖2

=
ns∑

n=1

(
− 2ReTr

{
Y HHAn

}
s̄n + 2 ImTr

{
Y HHBn

}
s̃n + |sn|2‖H‖2

)

+ const.

=‖H‖2 ·
ns∑

n=1

∣
∣∣
∣∣
sn − ReTr

{
Y HHAn

}− i ImTr
{
Y HHBn

}

‖H‖2
∣
∣∣
∣∣

2

+ const.

(7.4.2)

Equation (7.4.2) demonstrates that the ML metric decouples into a sum of ns

terms, where each term depends on exactly one complex symbol. Consequently,
the detection of sn is decoupled from the detection of sp for n �= p.

The following result establishes conditions on {An,Bn} for X to be propor-
tional to a unitary matrix.

Theorem 7.1: Relation between OSTBC and amicable orthogonal designs.
Let X be a matrix with the structure (7.1.1). Then

XXH =
ns∑

n=1

|sn|2 · I (7.4.3)

holds for all complex {sn} if and only if {An,Bn} is an amicable orthogonal design,
i.e.:

AnAH
n = I,BnBH

n = I

AnAH
p = −ApA

H
n ,BnBH

p = −BpB
H
n , n �= p

AnBH
p = BpA

H
n

(7.4.4)

for n = 1, . . . , ns, p = 1, . . . , ns.
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Proof: We have that

XXH =
ns∑

n=1

ns∑

p=1

(s̄nAn + is̃nBn)(s̄pAp + is̃pBp)H

=
ns∑

n=1

(s̄2nAnA
H
n + s̃2nBnBH

n )

+
ns∑

n=1

ns∑

p=1,p>n

(
s̄ns̄p(AnAH

p + ApA
H
n ) + s̃ns̃p(BnBH

p + BpB
H
n )
)

+ i

ns∑

n=1

ns∑

p=1

s̃ns̄p(BnAH
p − ApB

H
n )

(7.4.5)

which shows that (7.4.3) is satisfied whenever (7.4.4) holds. The converse is shown
in [Geramita and Geramita, 1978] (using a more abstract notation), but for
completeness we give a proof in Section 7.7.

A set of matrices {An,Bn} for which (7.4.4) holds is called an amicable or-
thogonal design. Therefore, Theorem 7.1 establishes an important link between
the theory of amicable orthogonal designs and OSTBC. While the condition (7.4.3)
(or (7.4.4)) that guarantees decoupled ML detection was easy to derive, the prob-
lem of constructing a set of matrices {An,Bn} that satisfy (7.4.4) is difficult.
In this text we will defer a systematic treatment of this construction problem to
Appendix B, but it is worth mentioning that although in general {An,Bn} are
complex-valued throughout this book, for OSTBC these matrices can be chosen
to be real-valued (see Appendix B).

In the next four examples we show the best known orthogonal STBC matrices
for nt = 2, 3, 4 and 8. Note that taking n̂t arbitrary rows out of an OSTBC matrix
for nt transmit antennas yields a (non-square) OSTBC matrix for n̂t antennas;
hence OSTBC matrices for nt = 5, 6 and 7 can easily be constructed by using the
results of the following examples.

Example 7.2: The Alamouti Code is an OSTBC.
Consider the Alamouti code in Section 6.3.1:

X =
[
s1 s∗2
s2 −s∗1

]
(7.4.6)
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Identification of An and Bn in (7.1.1) shows that

A1 =
[
1 0
0 −1

]
A2 =

[
0 1
1 0

]

B1 =
[
1 0
0 1

]
B2 =

[
0 −1
1 0

] (7.4.7)

Here N = ns = 2 and hence the code rate is equal to R = 1. It is easy to verify
both that X in (7.4.6) satisfies (7.4.3) and that (7.4.7) satisfies (7.4.4). Hence the
Alamouti code is an orthogonal space-time block code for nt = 2. A consequence
of this observation is that the code achieves full diversity as well as decoupled ML
decoding. We have already seen this in the direct analysis in Section 6.3.1.

Example 7.3: OSTBC for nt = 3.
For nt = 3, N = 4, ns = 3 the following code is an orthogonal STBC:

X =

⎡

⎣
s1 0 s2 −s3
0 s1 s∗3 s∗2

−s∗2 −s3 s∗1 0

⎤

⎦ (7.4.8)

This code has a rate of R = 3/4. An alternative OSTBC for nt = 3, that has rate
R = 3/4 as well, is:

X =

⎡

⎣
s1 −s∗2 s∗3 0
s2 s∗1 0 −s∗3
s3 0 −s∗1 s∗2

⎤

⎦ (7.4.9)

Example 7.4: OSTBC for nt = 4.
For nt = 4, N = 4, ns = 3 the following code is an orthogonal STBC:

X =

⎡

⎢
⎢
⎣

s1 0 s2 −s3
0 s1 s∗3 s∗2

−s∗2 −s3 s∗1 0
s∗3 −s2 0 s∗1

⎤

⎥
⎥
⎦ (7.4.10)

This code has also a rate of R = 3/4.

Example 7.5: OSTBC for nt = 8.
For nt = 8, N = 8, ns = 4 the following code is an orthogonal STBC (with rate
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R = 1/2):

X =

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

s1 0 0 0 s4 0 s2 −s3
0 s1 0 0 0 s4 s∗3 s∗2
0 0 s1 0 −s∗2 −s3 s∗4 0
0 0 0 s1 s∗3 −s2 0 s∗4

−s∗4 0 s2 −s3 s∗1 0 0 0
0 −s∗4 s∗3 s∗2 0 s∗1 0 0

−s∗2 −s3 −s4 0 0 0 s∗1 0
s∗3 −s2 0 −s4 0 0 0 s∗1

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

(7.4.11)

The next example shows that X can be unitary for all {sn} that belong to
a certain constellation, without (7.4.4) being satisfied. Hence the assumption in
Theorem 7.1 that X is unitary for all complex {sn} is necessary.

Example 7.6: A Diagonal Code.
Consider the following diagonal code:

X =
[
s1 0
0 s2

]
(7.4.12)

where we assume that s1 and s2 belong to a unitary (scalar) constellation such
that |sn| = 1. The corresponding matrices An and Bn are easily identified:

A1 =
[
1 0
0 0

]
A2 =

[
0 0
0 1

]

B1 =
[
1 0
0 0

]
B2 =

[
0 0
0 1

] (7.4.13)

Clearly, XXH = I for all sn in the constellation, yet (7.4.13) does not satisfy
(7.4.4). Hence, even though the code matrix X satisfies (7.4.1) for the values of
sn in the constellation, it is not an OSTBC; it can also be shown that the code
does not provide transmit diversity (see Exercise 7.4 on page 128).

7.4.1 ML Detection of OSTBC in a General Framework

The already derived Equation (7.4.2) gives an explicit expression for the ML metric
for detection of the symbols {sn}. It is useful to establish a link between this
result and the more general framework for linear STBC in Section 7.1. We have
the following theorem.
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Theorem 7.2: Channel decoupling property of OSTBC.
The code defined by {An,Bn} is an orthogonal STBC if and only if the matrix F
in (7.1.7) satisfies:

Re
{
FHF

}
= ‖H‖2 · I (7.4.14)

for all H.

Proof: Since vec(HX) = Fs′ by construction (see Section 7.1), we have that
∥
∥Fs′

∥
∥2 = s′TRe

{
FHF

}
s′ = ‖HX‖2 (7.4.15)

for all s and H. If X is an OSTBC, then by (7.4.3):

‖HX‖2 = ‖H‖2 · ‖s′‖2 (7.4.16)

for all H and s′. Therefore, by (7.4.15) and (7.4.16):

‖H‖2 · ‖s′‖2 = s′TRe
{
FHF

}
s′ (7.4.17)

for all s′. Hence all eigenvalues of Re
{
FHF

}
must be equal to ‖H‖2 and conse-

quently (7.4.14) must hold for all H.
Conversely, suppose that (7.4.14) holds for all H . Then (7.4.16) holds for all

H and s′ (cf. (7.4.15)) and hence

Tr
{
H(XXH − ∥∥s′∥∥2 · I)HH

}
= 0 (7.4.18)

for all H . Suppose that XXH − ‖s‖2 · I is nonzero and let h be an eigenvector
of XXH − ‖s‖2 · I corresponding to a nonzero eigenvalue. Taking H to be the
matrix with hH as its first row and with all other elements equal to zero, we find
that (7.4.18) is contradicted. Therefore XXH = ‖s‖2 · I for all s, so X must be
an OSTBC.

For ML detection, we do not need the above-shown fact that X is an orthog-
onal STBC only if (7.4.14) holds (the “if” part would be enough). However, this
stronger result makes the picture of OSTBC more complete and it will also be
used later in Section 7.4.4.

From Theorem 7.2 it follows that for OSTBC the ML metric in (7.1.13) can
be written

‖y − Fs′‖2 = ‖y‖2 − 2Re
{
yHFs′

}
+Re

{
s′TFFHs′

}

= ‖y‖2 − 2Re
{
yHFs′

}
+ ‖H‖2 · ‖s′‖2

= ‖H‖2 · ‖s′ − ŝ′‖2 + const.

(7.4.19)
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where

ŝ′ �
Re
{
FHy

}

‖H‖2 (7.4.20)

Equation (7.4.19) reinforces the result (7.4.2) that the ML detection of {sn} is
equivalent to solving ns scalar detection problems, one for each sn. It also shows
that since the likelihood function for symbol detection is a function of ŝ′ only, ŝ′

is a sufficient statistic for detection and any subsequent decoding. Note that the
matrix F in (7.4.20) can be interpreted as a space-time matched filter.

7.4.2 Error Performance of OSTBC

Let ŝ be defined via
[¯̂s
˜̂s

]
= ŝ′ (7.4.21)

Since the real and imaginary parts of ŝ are linear in the received data (see (7.4.20)),
ŝ has a Gaussian distribution. We can show that ŝ is a circularly symmetric
Gaussian vector with independent elements and a variance that is proportional to
σ2/‖H‖2. This important result, which quantifies the performance of orthogonal
STBC, is formally stated in the following theorem.

Theorem 7.3: Error performance of OSTBC.
Assume that X is a normalized version of (7.1.1):

X =

√
ρ2

nt
·

ns∑

n=1

(s̄nAn + is̃nBn) (7.4.22)

where ρ2 is a constant used to control the transmit power, and that (7.4.4) holds:

AnAH
n = I,BnBH

n = I

AnAH
p = −ApA

H
n ,BnBH

p = −BpB
H
n , n �= p

AnBH
p = BpA

H
n

(7.4.23)

Let

ŝ =
√

nt

ρ2
· Re
{
FH

a y
}
+ iRe

{
FH

b y
}

‖H‖2 (7.4.24)

where F a and F b are defined by (7.1.7). Then
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(i) The average transmitted energy during the N time intervals is equal to

E
[
Tr
{
XXH

}]
= ρ2 · E [‖s‖2] (7.4.25)

(ii) The vector ŝ is a sufficient statistic for symbol detection, and it has the
following distribution:

ŝ ∼ NC

(
s,

nt

ρ2
σ2

‖H‖2 · I
)

(7.4.26)

or equivalently,

ŝ′ =
[¯̂s
˜̂s

]
∼ N

(
s′,

nt

ρ2
σ2

2‖H‖2 I
)

(7.4.27)

(iii) The SNR for each element in ŝ is equal to:

SNR =
ρ2

nt
· ‖H‖2

σ2
· E[|sn|2] (7.4.28)

Proof: Part (i) is immediate and part (iii) follows directly from part (ii). It remains
to derive the first and second-order moments of ŝ. We have that:

E
[
ŝ′
]
=

1
Tr
{
HHH

}E
[
Re
{
FHy

}]

=
1

Tr
{
HHH

}E
[
Re
{
FH
(
Fs′ + e

)}]

= s′

(7.4.29)

and

E
[
(ŝ′ − s′)(ŝ′ − s′)T

]

=
nt

ρ2
1

(
Tr
{
HHH

})2E
[
Re
{
FHe

}(
Re
{
FHe

})T ]

=
nt

ρ2
1

2‖H‖4E
[
Re
{
FHeeHF + FHeeTF ∗}]

=
nt

ρ2
σ2

2‖H‖2I

(7.4.30)
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where we used the fact that

Re {X} ·Re {Y } = 1
2
Re
{
XY + XY ∗} (7.4.31)

for any two matrices X and Y . The stated result (7.4.27) follows.

In essence, Theorem 7.3 shows that (for a fixed H), the arrangement of the
received data in y = vec(Y ) and pre-multiplication of y with the matrix FH in
(7.1.7) decouples the space-time channel corresponding to an OSTBC into 2ns

independent and real scalar AWGN channels, or equivalently, ns complex AWGN
channels (see Figure 7.1). This decoupling into AWGN channels is indeed one of
the main virtues of OSTBC and has two important consequences in the context of
concatenation of OSTBC with outer codes. First, any outer coding techniques (in-
cluding relatively recent developments such as trellis-coded modulation [Biglieri
et al., 1991], [Proakis, 2001, Sec. 8.3] and turbo coding [Sklar, 1997]) de-
signed for scalar channels can be used on each sub-channel. Second, since the
likelihood function for the coherent OSTBC detection problem depends on the
received data only via the output of these AWGN channels, the output of these
AWGN channels is a sufficient statistic not only for symbol detection, but for all
subsequent decoding as well. This means that soft information to a channel de-
coder can be transferred in the same way as for any other AWGN channel. Finally,
we note already here that a similar decoupling result holds for the extension of
OSTBC to frequency selective channels (see Chapter 8).

Diversity Order

From Theorem 7.3 we know that the SNR on the nth complex sub-channel is equal
to

SNR =
ρ2

nt
· ‖H‖2

σ2
· E[|sn|2

]
(7.4.32)

Suppose that the propagation channel obeys the model in Section 2.1.2:

h � vec(H) ∼ NC

(
0,RT

t ⊗ Rr

)
(7.4.33)

where Rt and Rr are matrices that determine the transmit and receive correlation,
respectively. A straightforward application of Theorem 4.1 (see page 42) implies
that the diversity order is equal to the rank of the covariance matrix of h:

Gd = rank{RT
t ⊗ Rr} = rank{Rt} · rank{Rr} (7.4.34)
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(a) nt × nr space-time channel

signal 2

signal 1

AWGN

AWGN

AWGN

signal ...

(b) ns independent AWGN channels

Figure 7.1. Decoupling of the space-time channel into ns parallel and independent complex
AWGN channels.

If the fading is uncorrelated, then both Rt and Rr have full rank and consequently
OSTBC achieves full diversity (i.e., Gd = ntnr). On the other hand, in the case
of completely correlated fading, Rt and Rr are rank deficient and in this case the
diversity order will be Gd < nrnt. See also [Bölcskei and Paulraj, 2000a] for
a discussion on the performance of OSTBC in correlated Rayleigh fading.

We can also compute the diversity order of OSTBC, without using the ex-
pression for the SNR, as follows. Consider the received data in (7.1.8) and let
y = vec(Y ), h = vec(H), e = vec(E). It follows that (compare (2.1.8)):

y = vec(HX + E) = (XT ⊗ I)h + e (7.4.35)

Suppose that the symbols {s0n}ns
n=1 are transmitted, and let {sn} be any hypo-

thetical symbols that are different from {s0n}. Also, let X be the OSTBC matrix
associated with {sn} and let X0 be the matrix corresponding to {s0n}. Clearly,

X − X0 =
ns∑

n=1

(
(s̄n − s̄0n)An + i(s̃n − s̃0n)Bn

)
(7.4.36)
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is also an OSTBC matrix. From Theorem 7.1 (see page 102) we conclude that:

(X − X0)(X − X0)H =
ns∑

n=1

|sn − s0n|2 · I (7.4.37)

Since the matrix in (7.4.37) has always full rank (equal to nt), application of
Theorem 4.2 (see page 45) shows once again that the system achieves a diversity
order equal to the rank of the covariance matrix of h.

BER Performance Examples

Since OSTBC decouples the space-time channel into parallel scalar channels each
with

SNR =
ρ2

nt
· ‖H‖2

σ2
· E[|sn|2

]
(7.4.38)

we can use Theorem 4.1 (see page 42) to compute the error probability. If an
OSTBC with rate R = ns/N < 1 is used, an increase in the constellation size
is needed to preserve the same data rate (in terms of bits/second) as we would
achieve with a conventional system using one transmit antenna and no OSTBC.
The next example illustrates that provided that the knowledge of the propagation
channel is sufficiently accurate, the loss in performance due to the increase in the
constellation size is often compensated for by the higher diversity order of OSTBC,
as long as the SNR is large enough.

Example 7.7: BER performance of OSTBC.
Assume that the elements of H are independent and Gaussian with unit variance.
In Figures 7.2 and 7.3 we plot the average BER versus the SNR for OSTBC using
one, two, three and four transmit antennas, and one receive antenna. Monte-Carlo
simulation on a standard personal computer was used to obtain the plots. For the
case of one transmit antenna, no OSTBC is used. In the case of two antennas we
use the Alamouti code (see Section 6.3.1), and for three and four antennas we use
the rate-3/4 codes (7.4.8) and (7.4.10). In Figure 7.2, the transmit power is equal
to one for each antenna, whereas in Figure 7.3 we have normalized the transmit
power so that the total radiated power (accumulated over all antennas) is equal
to one. For the case of one and two antennas, we use 8-PSK modulation. To keep
the bit rate constant, we use a uniform and rectangular 16-QAM constellation for
the case of three and four transmit antennas. Gray coding is used to map the
information bits onto the complex constellation. The shift of the curves between
Figures 7.2 and 7.3 is a consequence of the difference in the normalization of the



112 Linear STBC for Flat Fading Channels Chapter 7

5 10 15 20 25 30
10

−5

10
−4

10
−3

10
−2

10
−1

A
ve

ra
ge

 B
E

R

SNR [dB]

1 TX, 8−PSK 
2 TX, 8−PSK 
3 TX, 16−QAM
4 TX, 16−QAM

Figure 7.2. Comparison of BER for one, two, three and four transmit antennas using OSTBC.
The transmit power is equal to one for each antenna (hence ρ2 = nt). The transmission rate (in
bits/second) is the same for all curves.

transmit power. Note that the diversity orders corresponding to the different
schemes can easily be seen from the slope of the BER curves.

For receive diversity with nt = 1 transmit and nr ≥ 1 receive antennas, the
received SNR after optimal combining is (see (5.1.10)):

SNR =
‖h‖2
σ2

(7.4.39)

provided that the symbols satisfy E[|sn|2] = 1. On the other hand, the SNR
for OSTBC, assuming a total transmitted energy equal to one during each time
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Figure 7.3. Comparison of BER for one, two, three and four transmit antennas using OS-
TBC. The sum of the transmitted power over all antennas is equal to one (hence ρ2 = 1). The
transmission rate (in bits/second) is the same for all curves.

interval, is given by Theorem 7.3 (see page 107):

SNR =
N

ns
· 1
nt

‖H‖2
σ2

(7.4.40)

Hence, the use of transmit diversity via OSTBC incurs a loss in SNR compared
to receive diversity (unless N > nsnt, which is typically not the case). This loss
was illustrated already in Section 6.2, and is related to the fact that an OSTBC
transmitter does not steer energy in any particular direction. On the other hand,
a transmitter that knows the channel can apply transmit weights as in Section 6.1
and steer a beam in the direction of the receiver. The following example provides
an illustration of these facts.
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Figure 7.4. Comparison of transmit diversity via OSTBC and receive diversity.

Example 7.8: Comparison between receive and transmit diversities.
We consider a system with nr receive and nt transmit antennas using 8-PSK.
Figure 7.4 shows the BER performance using ML detection, obtained via Monte-
Carlo simulation and assuming that the channel matrix H had i.i.d. zero-mean
Gaussian entries. For the case of nt = 1, no space-time coding is used, whereas
for nt = 2 the Alamouti code is used to achieve transmit diversity. The total
transmitted power (accumulated over all antennas) is the same in both cases.
Clearly, the case of nt = 1, nr = 2 is 3 dB superior to the case of nt = 2, nr = 1,
as predicted by the theory. A similar conclusion holds for the comparison between
the cases nt = 2, nr = 2 and nt = 4, nr = 1.



Section 7.4. Orthogonal STBC 115

7.4.3 Mutual Information Properties of OSTBC

Assuming that the signals transmitted by different antennas are uncorrelated, and
that the average transmitted energy per antenna and time interval is 1/nt, the
capacity of the MIMO channel is, for a given H and unity bandwidth; see (3.2.1):

CMIMO(H) = log2

∣∣
∣∣I +

1
nt

HHH

σ2

∣∣
∣∣ (7.4.41)

If OSTBC is used, and under the same power normalization, we know from The-
orem 7.3 (see page 107) that the MIMO channel transforms into ns independent
scalar complex AWGN channels with SNR

SNR =
N

ns
· ‖H‖2

ntσ2
(7.4.42)

The mutual information offered by ns such channels is ns times the corresponding
mutual information for a SISO system (cf. (3.2.2)), divided by the number of time
instants used for the transmission:

COSTBC(H) =
ns

N
log2

∣∣
∣∣1 +

N

ns

‖H‖2
ntσ2

∣∣
∣∣ (7.4.43)

(This equation can also be derived from (7.3.1) and Theorem 7.2.)
We can expect that the effective channel structure enforced by employing OS-

TBC will limit the mutual information, and this is indeed the case. The following
result, introduced in [Sandhu and Paulraj, 2000], quantifies this limitation.

Theorem 7.4: Mutual information of OSTBC.
Let the average transmitted energy (accumulated over all nt transmit antennas)
per time interval be equal to one. Then it holds that

CMIMO(H) ≥ COSTBC(H) (7.4.44)

with equality if and only if H has rank one and ns = N .
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Proof: Let {λk}nt
k=1 be the eigenvalues of HHH/(ntσ

2). Then, since ns ≤ N ,

CMIMO(H)− COSTBC(H) = log2
nt∏

k=1

(1 + λk)− ns

N
log2

(

1 +
N

ns

nt∑

k=1

λk

)

= log2

(

1 +
nt∑

k=1

λk + · · ·+
nt∏

k=1

λk

)

− ns

N
log2

(

1 +
N

ns

nt∑

k=1

λk

)

≥ log2

(

1 +
nt∑

k=1

λk

)

− ns

N
log2

(

1 +
N

ns

nt∑

k=1

λk

)

=
ns

N

⎛

⎝log2

(

1 +
nt∑

k=1

λk

)N/ns

− log2

(

1 +
N

ns

nt∑

k=1

λk

)⎞

⎠

≥ 0
(7.4.45)

If the rank of H is one, all but one of the {λk} are equal to zero. If also
ns = N , it follows immediately from (7.4.45) that COSTBC(H) = CMIMO(H). On
the other hand, equality in (7.4.45) can hold only when exactly one λk is nonzero
and ns = N .

Despite the pleasing property that OSTBC decouples the space-time channel
into parallel and independent AWGN channels, Theorem 7.4 shows that the struc-
ture imposed by OSTBC generally limits the maximal error-free throughput that
can be achieved, regardless of the amount of outer channel coding that is employed.
We show in Appendix B that ns = N is only possible for nt = 2 (of course, the
degenerate case nt = 1 does not require any OSTBC). Hence, Theorem 7.4 states
that OSTBC can only achieve the channel capacity in the case of nt = 2 and a rank
one channel matrix H . This includes the special case of nt = 2, nr = 1, which may
be practically quite important. In fact, we can expect OSTBC to be particularly
suitable for improving the performance (in terms of BER or outage capacity) of
existing SISO systems by employing an extra transmit antenna. However, as we
illustrate in the following example, the usefulness of OSTBC may not be limited
to that case only.

Example 7.9: Average and 99%-outage capacity of a system using OSTBC.
Figure 7.5 shows a plot of the average and 99%-outage capacity of a MIMO system
(see (7.4.41)) with nt = 2 transmit and nr = 2 receive antennas. The figure
also shows the corresponding average and outage OSTBC capacity (see (7.4.43)),
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Figure 7.5. Average and 99%-outage capacity for a system with nr = 2 receive and nt = 2
transmit antennas, compared to the channel capacity of the two scalar channels provided by
OSTBC and to the corresponding quantities for a SISO system.

compared to the quantities for a SISO system (with nt = nr = 1). Clearly,
CMIMO(H) ≥ COSTBC(H) as predicted by Theorem 7.4, but the loss associated
with OSTBC is not as large for the outage capacity as for the average capacity.
Considering the average capacity, the increase in capacity offered by going from
nt = nr = 1 to nr = nt = 2 is relatively modest, and moreover, only a small part
of this increase can be exploited by OSTBC. On the other hand, considering the
perhaps more important quantity of outage capacity, we observe that the increase
in the channel capacity from nt = nr = 1 to nt = nr = 2 is significant, and that
OSTBC can exploit a large fraction of this increase. In other words, the capacity
limitation of OSTBC indicated in Theorem 7.4 is not severe in this case.
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7.4.4 Minimum MSE Optimality of OSTBC

Suppose that we ignore the constraint that {sn} belong to a finite constellation, and
treat them as continuous (complex) quantities. Then the linear STBC detection
problem becomes a standard ML estimation problem that can be solved via a
direct minimization of the ML metric:

‖Y − HX‖2 = ‖y − F s′‖2 (7.4.46)

The metric in (7.4.46) is a quadratic function of {sn} for n = 1, . . . , ns. The
minimum of (7.4.46) with respect to the real-valued vector s′ occurs when

ŝ′ =
(
Re
{
FHF

})−1Re
{
FHy

}
(7.4.47)

The next theorem (see also [Larsson and Stoica, 2003]) shows that the
mean-square error (MSE) of the “ML estimates” in (7.4.47) is minimized exactly
when the linear STBC is an OSTBC. This result can be interpreted as a stronger
version of a result in [Ganesan and Stoica, 2001a].

Theorem 7.5: Minimum MSE property of OSTBC.
Subject to the following elemental transmit power constraint:

λmax(AnAH
n ) ≤ 1, n = 1, . . . , ns

λmax(BnBH
n ) ≤ 1, n = 1, . . . , ns

(7.4.48)

the MSE of ŝ′ is minimized exactly when X is an OSTBC.

Proof: Using the circular Gaussian distribution of E along with the fact that

Re{X}Re{Y } = 1
2
(Re{XY }+Re{XY ∗}) (7.4.49)

for any two matrices X and Y , we find that the MSE of ŝ′ is

E
[‖ŝ′ − s′‖2] = E

[∥∥(Re
{
FHF

})−1Re
{
FHy

}− s′
∥∥2
]

=E
[∥∥(Re

{
FHF

})−1Re
{
FHe

}∥∥2
]

=
1
2
E
[
Tr
{(

Re
{
FHF

})−2Re
{
FHeeHF + FHeeTF ∗}

}]

=
σ2

2
Tr
{(

Re
{
FHF

})−1}

(7.4.50)
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Under (7.4.48) we have that

Tr
{
FHF

}
=

ns∑

n=1

(
Tr
{
AH

n HHHAn

}

+Tr
{
BH

n HHHBn

}) ≤ 2ns · ‖H‖2
(7.4.51)

By the matrix version of the Cauchy-Schwarz inequality [Horn and Johnson,
1985, Th. 5.1.4]:

√
Tr
{
Re
{
FHF

}} · Tr
{(

Re
{
FHF

})−1}

≥Tr
{(

Re
{
FHF

})1/2 · (Re{FHF
})−1/2}

=Tr {I2ns} = 2ns

(7.4.52)

where I2ns is the identity matrix of dimension 2ns × 2ns, and (·)1/2 denotes the
Hermitian square root of a positive definite matrix. Note that equality in (7.4.52)
holds if Re

{
FHF

}
is proportional to an identity matrix.

From (7.4.51) and (7.4.52) we have that (note that Tr
{
FHF

}
is always real):

Tr
{(

Re
{
FHF

})−1} ≥ 4n2s
Tr
{
Re
{
FHF }} ≥ 4n2s

2ns · ‖H‖2 =
2ns

‖H‖2 (7.4.53)

The above lower bound is achieved when

Re
{
FHF

}
= I · ‖H‖2 (7.4.54)

Hence

E
[‖ŝ′ − s′‖2] ≥ ns · σ2

‖H‖2 (7.4.55)

with equality if X is an OSTBC (cf. Theorem 7.2 on page 106).

Note that (7.4.48) and (7.4.51) imply that

Tr
{
XXH

}
= s′T F̌

H
F̌ s′ ≤ 2nsnt

∥
∥s′
∥
∥2 (7.4.56)

where F̌ stands for the matrix F in (7.1.7) with H = I. Therefore, an STBC that
satisfies the elemental power constraint (7.4.48) also satisfies a total power con-
straint. A more detailed discussion on the relationship and interplay between ele-
mental and total power constraints was given in [Stoica and Ganesan, 2002a]
(see also Chapter 6 and [Scaglione et al., 2002]).
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7.4.5 Geometric Properties of OSTBC

Let us consider a transmitted matrix X (that may not be an OSTBC matrix).
From Theorem 4.2 (see page 45), we find that the probability that the ML detector
decides for a wrong codeword X �= X0 is given by

P (X0 → X|H) = Q

(√
1
2σ2

‖H(X0 − X)‖2
)

(7.4.57)

where H is the propagation channel, and σ2 is the noise variance. This error
probability depends in a monotonically decreasing way on the following Euclidean
distance between the noise-free received codewords HX and HX0:

d2 = ‖H(X0 − X)‖2 (7.4.58)

In a SISO system, the distance between the received (noise-free) codewords

d2 = |h|2|x0 − x|2 (7.4.59)

is proportional to the distance between the transmitted codewords |x0−x|2. This
is not the case in general for a MIMO system, unless H is unitary. However, if X
is an OSTBC matrix, we have that (see Theorem 7.3 on page 107):

(X − X0)(X − X0)H =
ns∑

n=1

|s0n − sn|2I (7.4.60)

and hence

d2 = ‖H(X0 − X)‖2 = ‖H‖2 ·
ns∑

n=1

|s0n − sn|2 (7.4.61)

Consequently, for OSTBC matrices, the distance between the received (noise-free)
codewords d2 = ‖H(X0 − X)‖2 is proportional to the distance between the trans-
mitted codewords:

‖X − X0‖2 = nt

ns∑

n=1

|s0n − sn|2 (7.4.62)

For the set of transmitted codewords we can define a distance profile. The
distance profile D for a given code matrix X0 is defined as the set of the squared
distances between that code matrix X0 and all other code matrices Xk �= X0. In
mathematical terms:

D(X0) =
{‖Xk − X0‖2 : Xk �= X0

}
(7.4.63)
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A set of code matrices is said to constitute a uniform constellation if its members
have the same distance profile [Forney, 1991]. This means, in particular, that
the minimum Euclidean distance

d2min = min
Xk �=X0

‖Xk − X0‖2 (7.4.64)

as well as the number of code matrices achieving this minimum distance is the
same for all codewords; hence the average error probability is approximately the
same for all codewords.

An example of a uniform constellation in the context of OSTBC is the set of
OSTBC matrices where the scalar symbols {sk} are taken from an MPSK con-
stellation. This is so because in the case of MPSK, all the constellation points
are uniformly distributed over the unit circle and therefore the constellation looks
the same from each point. (An example of a constellation that does not have this
property is QAM; therefore OSTBC using QAM symbols does not form a uniform
constellation.)

7.4.6 Union Bound Optimality of OSTBC

We prove in this section that OSTBC matrices are optimal in the sense that
they minimize the union bound on the probability of error, subject to a power
constraint. The proof of this fact was first given in [Sandhu, 2002]. Our proof
is inspired by that in the cited reference, even though it is slightly different and
somewhat more general.

Let U = {s} be the set of all possible signal vectors (of length ns). Assume that
the signal {s01, . . . , s0ns

} is transmitted, and let s0 denote the corresponding signal
vector of length ns. Let X0 be the transmitted code matrix, and let Y = HX0+E
be the received data matrix in the usual manner. Then the probability that a
certain wrong signal vector sk �= s0 is decided in favor of s0 is equal to (see
Theorem 4.2 on page 45):

P (s0 → s|H) =P
(‖Y − HXk‖2 < ‖Y − HX0‖2

)

=Q

(√
1
2σ2

‖H(Xk − X0)‖2
)

(7.4.65)

where Xk is the OSTBC matrix corresponding to sk.
Let K = |U| be the number of elements in U , i.e., the number of possible signal

vectors of length ns. Furthermore, let

Ŭ = {s̆ = s − ŝ : s ∈ U , ŝ ∈ U , s �= ŝ} (7.4.66)
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be the set of all possible error signals, and let K̆ = |Ŭ | be the number of elements
in Ŭ . Note that typically, K̆ 	 K. If all transmitted signal vectors are equally
likely, the probability that the transmitted signal vector is incorrectly detected can
be upper bounded by the union bound (see Section 4.2.1):

Punion =
1
K

K̆∑

k=1

Q

(√
1
2σ2

∥
∥
∥HX̆k

∥
∥
∥
2
)

(7.4.67)

where X̆k is the STBC matrix associated with the error signal s̆k.
We have the following result.

Theorem 7.6: Union bound optimality of OSTBC.
Let H be fixed. Consider the class of {An,Bn} that satisfy the same elemental
power constraint as in Section 7.4.4:

λmax{AnAH
n } ≤1, n = 1, . . . , ns

λmax{BnBH
n } ≤1, n = 1, . . . , ns

(7.4.68)

Among the codes that satisfy (7.4.68), it holds that

1
K

K̆∑

k=1

Q

(√
1
2σ2

∥∥
∥HX̆k

∥∥
∥
2
)

≥ 1
K

K̆∑

k=1

Q

(√
‖s̆k‖2
2σ2

· ‖H‖2
)

(7.4.69)

Equality holds if {An,Bn} satisfy (7.4.23).

Proof: See Section 7.7.

Note that if {An,Bn} are constrained to be proportional to unitary matrices,
the optimality result in Theorem 7.6 is true also under a power constraint such as
(6.2.12). See [Stoica and Ganesan, 2002a] (and Chapter 6) for a discussion on
these constraints and the relation between them.

7.5 STBC Based on Linear Constellation Precoding

The technique of constellation precoding was introduced in the context of SISO
systems [Boutros and Viterbo, 1998], [Boutros et al., 1996], and later
used for space-time diversity, for example, in [Xin et al., 2001]. Related ideas
also appear in [Gamal and Damen, 2002]. In principle, the constellation pre-
coding techniques encode a set of symbols sn by forming a vector of ns symbols,
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s = [s1 · · · sns ]T , and pre-multiplying this vector by an nt × ns precoding matrix
Φ as follows:

x = Φs (7.5.1)

Next, the transmitted nt × nt code matrix is computed as:

X = U ·

⎡

⎢
⎢⎢
⎢
⎣

x1 0 · · · 0

0 x2
. . .

...
...

. . . . . . 0
0 · · · 0 xnt

⎤

⎥
⎥⎥
⎥
⎦

(7.5.2)

where U is a unitary matrix, and transmitted in the usual way (cf. Section 2.1).
The received data can be written as:

Y = HX + E = HU

⎡

⎢⎢
⎢⎢
⎣

x1 0 · · · 0

0 x2
. . .

...
...

. . . . . . 0
0 · · · 0 xnt

⎤

⎥⎥
⎥⎥
⎦
+ E (7.5.3)

Clearly, the unitary matrix U can be “absorbed” into the channel: HU ; if H
has independent and Gaussian elements then so will HU and hence the presence
of the matrix U does not affect the error probability (but it can be chosen, for
example, to reduce the dynamic range of the transmitted signal). For simplicity,
we shall simply set U = I.

The probability that a transmitted vector s0 is incorrectly detected as a dif-
ferent vector s is (see Theorem 4.2 on page 45):

P (s0 → s|H) = Q

(√
1
2σ2

‖H(X − X0)‖2
)

(7.5.4)

where X and X0 are the matrices in (7.5.2) associated with s and s0. If H has
independent and zero-mean Gaussian elements with power ρ2, then the average
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error probability is bounded by (see Theorem 4.2):

EH[P (s0 → s)] ≤

∣
∣∣
∣∣
∣∣
∣∣
∣

⎡

⎢⎢
⎢⎢
⎣

x1 − x01 0 · · · 0

0 x2 − x02
. . .

...
...

. . . . . . 0
0 · · · 0 xnt − x0nt

⎤

⎥⎥
⎥⎥
⎦

∣
∣∣
∣∣
∣∣
∣∣
∣

−nr

·
( ρ2

4σ2
)−nrnt

=
( nt∏

n=1

|φT
n (s − s0)|

)−nr ·
( ρ2

4σ2
)−nrnt

(7.5.5)

where φT
n is the nth row of Φ.

Like OSTBC, codes based on constellation precoding are constructed starting
from an error performance criterion, and in general they incur (like OSTBC) a loss
in the mutual information between the transmitter and the receiver. The detection
of codes based on constellation precoding amounts to minimizing a metric similar
to (7.1.13), which is a computationally complex problem. A deeper treatment of
constellation precoding codes falls outside the scope of this text.

7.6 Summary and Discussion

A linear space-time block code is a matrix X that is formed as a linear combination
of the real and imaginary parts of a set of symbols {s1, . . . , sns} according to
X =

∑ns
n=1(s̄nAn + is̃nBn), where {An,Bn} are fixed matrices. Clearly, linear

codes constitute only a special case of all possible space-time codes; nevertheless
the class of linear STBC is quite rich.

Linear STBC can be constructed either by maximizing the throughput via
information-theoretic criteria, or by adopting a more performance-oriented point
of view (for example, by attempting to minimize the error probability). In this
chapter, we have provided a summary of linear STBC along with their associated
maximum-likelihood criteria for coherent detection (see Section 7.1). The intention
of the chapter has not been to present an exhaustive review of all available results
on linear STBC; instead we have tried to focus on general principles illustrated by
a few examples. The linear STBC discussed in the chapter include spatial multi-
plexing and linear dispersion codes (see Sections 7.2 and 7.3), orthogonal STBC
(see Section 7.4), and codes based on constellation precoding (see Section 7.5).

A substantial part of this chapter (viz., Section 7.4) was dedicated to orthog-
onal STBC, which is an important subclass of linear STBC for which X is pro-
portional to a unitary matrix for all symbols. There are at least three reasons
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behind the interest that OSTBC has generated. First, although the theory behind
their existence (which is presented in Appendix B) is fairly complicated, they are
conceptually quite simple. Second, in addition to providing diversity of maximal
order (i.e., nrnt), they possess a number of optimality properties; for example,
they minimize the union bound on the error probability for a given channel. Last
but not least, OSTBC leads to decoupled ML detection of the symbols used to
form X.

The developments in this chapter are based on the channel models of Chapter 2,
as well as results from Chapters 3–4. Most remaining parts of the book will
deal with linear STBC and therefore build on results from the present chapter.
For instance, in Chapter 8 we will discuss linear STBC for frequency-selective
channels, and in Chapter 9 we will present detection algorithms for linear STBC.
The material in Chapters 10 and 11 will also be primarily concerned with linear
STBC.

7.7 Proofs

Proof of Theorem 7.1

For all s, we have that

‖s‖2I =
ns∑

n=1

(s̄2nAnAH
n + s̃2nBnBH

n )

+
ns∑

n=1

ns∑

p=1,p>n

(
s̄ns̄p(AnAH

p +ApA
H
n ) + s̃ns̃p(BnBH

p + BpB
H
n )
)

+ i

ns∑

n=1

ns∑

p=1

s̃ns̄p(BnAH
p − ApB

H
n )

(7.7.1)

• Let k be an arbitrary integer and set sn = 1 for n = k and sn = 0 for n �= k.
Then insertion in (7.7.1) shows that we must have AkA

H
k = I.

• In a similar way, let k be arbitrary and set sn = i for n = k and sn = 0 for
n �= k. Insertion in (7.7.1) shows that BkB

H
k = I.

• Let k, p be two arbitrary integers such that k �= p. Set sn = 1 for n = k and
n = p, and sn = 0 for n �= k, n �= p. Insertion in (7.7.1) shows that we must
have AkA

H
p + ApA

H
k = 0.

• In a similar manner, let k, p be two arbitrary integers such that k �= p. Set
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sn = i for n = k and n = p, and sn = 0 for n �= k, n �= p. Insertion in (7.7.1)
shows that BkB

H
p +BpB

H
k = 0.

• Let k be an arbitrary integer and choose sn = 1+ i for n = k and sn = 0 for
n �= k. It follows that BkA

H
k = AkB

H
k .

• Finally, let k and p, k �= p, be arbitrary and set sn = 1 for n = k, sn = i
for n = p, and sn = 0 for n �= k, n �= p. Insertion in (7.7.1) shows that
AkB

H
p = BkA

H
p .

Proof of Theorem 7.6

Clearly, if X is an OSTBC, we have that:
∥∥
∥HX̆k

∥∥
∥
2
= ‖s̆k‖2‖H‖2 (7.7.2)

Hence, it follows immediately that equality holds in (7.4.69) if {An,Bn} satisfy
(7.4.23). The difficult part is to show the inequality.

For notational convenience, let

φn,p = 2ReTr
{
HHHAnAH

p

}

ψn,p = 2ReTr
{
HHHBnBH

p

}

ϕn,p = 2 ImTr
{
HHHApB

H
n

}
(7.7.3)

for any n = 1, . . . , ns and p = 1, . . . , ns. Also, for any integer r = 0, . . . , ns, let us
denote by Pr the set of {Ak,Bk} for which

φn,n ≤ 2‖H‖2, n = 1, . . . , ns

ψn,n ≤ 2‖H‖2, n = 1, . . . , ns

φn,p = 0, n �= p, n = r + 1, . . . , ns, p = r + 1, . . . , ns

ψn,p = 0, n �= p, n = r + 1, . . . , ns, p = r + 1, . . . , ns

ϕn,p = 0, n = r + 1, . . . , ns, p = r + 1, . . . , ns

(7.7.4)

Note that Pns is equal to the set of all permissible matrices {An,Bn} (see (7.4.68));
in this case none of φn,p, ψn,p or ϕn,p are forced to be zero by (7.7.4).

We will prove the inequality in (7.4.69) by induction over r. Clearly, for r = 0,
we have that

1
2σ2

∥
∥∥HX̆k

∥
∥∥
2
=

1
4σ2

ns∑

n=1

(
˘̄s(k)2n φn,n + ˘̃s(k)2n ψn,n

)

≤ ‖s̆k‖2
2σ2

‖H‖2
(7.7.5)
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Consequently, because the Q-function is monotonically decreasing, (7.4.69) holds
for all {An,Bn} ∈ P0.

To perform the induction step, assume now that (7.4.69) holds for all
{An,Bn} ∈ Pr0 where 0 ≤ r0 ≤ ns. Then for all {An,Bn} ∈ Pr0+1, we can
write

1
K

K̆∑

k=1

Q

(√
1
2σ2

∥∥
∥HX̆k

∥∥
∥
2
)

=
1
K

K̆∑

k=1

Q

(√
1
2σ2
(
zk,r0 + z+k,r0

))

(7.7.6)

where

zk,r0 =
1
2

ns∑

n=1

(
˘̄s(k)2n φn,n + ˘̃s(k)2n ψn,n

)

+
r0∑

n=1

r0∑

p=1,p>n

(
˘̄s(k)n

˘̄s(k)p φn,p + ˘̃s(k)n
˘̃s(k)p ψn,p

)

+
r0∑

n=1

r0∑

p=1

˘̃s(k)n
˘̄s(k)p ϕn,p

(7.7.7)

and

z+k,r0 =
r0∑

n=1

(
˘̄s(k)n

˘̄s(k)r0+1
φn,r0+1 + ˘̃s(k)n

˘̃s(k)r0+1
ψn,r0+1

)
+

r0+1∑

n=1

˘̃s(k)n
˘̄s(k)r0+1

ϕn,r0+1 (7.7.8)

Due to symmetry reasons (see [Sandhu, 2002] for a more detailed discussion) we
must have

1
K

K̆∑

k=1

Q

(√
1
2σ2

∥
∥∥HX̆k

∥
∥∥
2
)

=
1
2K

K̆∑

k=1

Q

(√
1
2σ2
(
zk,r0 + z+k,r0

))

+ Q

(√
1
2σ2
(
zk,r0 − z+k,r0

))

≥ 1
K

K̆∑

k=1

Q

(√
1
2σ2

zk,r0

)

≥ 1
K

K̆∑

k=1

Q

(√
‖s̆k‖2
2σ2

‖H‖2
)

(7.7.9)
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where the first inequality is due to the easily verified fact that

Q
(√

x + y
)
+ Q

(√
x − y

)
≥ 2Q

(√
x
)

(7.7.10)

for any x and y, and in the second inequality we used the induction assumption.

7.8 Problems

1. Give an example of a linear STBC (according to the definition in (7.1.1)) that
is not a linear function of only the complex symbol vector s.

2. Prove (7.4.47).

3. Study the following code matrix (in the framework of Section 7.1):

X =
[
s1 s1
s2 −s2

]
(7.8.1)

Suppose that s1 and s2 are complex symbols in general.

(a) Find the matrices {An,Bn} and F .

(b) Give the ML rule for detection. Is the symbol detection decoupled?

(c) Can the code be used to achieve transmit diversity?

4. Consider the code in Example 7.6 (see page 105) and verify that it does not
give transmit diversity.

5. Consider again the diagonal code in Example 7.6. The reason for the loss of
diversity of this code is easy to understand intuitively: energy from a certain
information bit is transmitted via only one antenna and hence the resulting
SNR will be a function of the path gains corresponding to that particular
antenna only. In an attempt to correct this situation, consider the following
“ad-hoc” code matrix:

X =
1
2

[
s1 + s2 s1 − s2
s1 − s2 s1 + s2

]
(7.8.2)

Assume that the symbol constellation S is unitary; hence |s1| = |s2| = 1.

(a) Show that XXH = I for all {sn} in the constellation, and demonstrate
that the ML detection of s1 and s2 is decoupled.
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(b) Verify that the matrices {An,Bn} associated with (7.8.2) do not satisfy
(7.4.4).

(c) Does the code achieve transmit diversity?

6. Derive (7.4.43) by using (7.3.1) along with Theorem 7.2 (see page 106).

7. Obtain a bound on the error rate for spatial multiplexing using Theorem 4.2
(see page 45).

8. Show that the matrices {An,Bn} associated with constellation precoding are
diagonal (provided that U = I), and derive explicit expressions for them.

9. Prove the last inequality in (7.4.45).

10. Suppose that (7.4.4) holds. Prove that Re
{
FHF

}
= ‖H‖2 · I via a direct

algebraic approach.

Hint: The trace of a Hermitian matrix is real-valued, and the trace of an
anti-Hermitian matrix is imaginary.



Chapter 8

LINEAR STBC FOR

FREQUENCY-SELECTIVE CHANNELS

In this chapter we proceed to analyze transmit diversity for frequency-selective
channels and, in particular, extensions of linear space-time block coding to such
channels. Surprisingly, for a channel with L+1 Rayleigh fading taps, it is relatively
easy to construct a transmission scheme that achieves a diversity order equal to
nrnt(L+1); however, it is harder to construct a scheme that achieves this diversity
order and at the same time has a tractable receiver complexity.

8.1 Achieving Diversity for a Frequency-Selective Channel

Recall from Section 2.2 that if a scalar sequence {s(−Npre), . . . , s(N0+Npost −1)},
is transmitted via the block-transmission technique in Section 2.2, the received
data can be expressed as:

y =
(
XT ⊗ Inr

)
h + e (8.1.1)

where
h = vec

([
H0 · · · HL

])

y =
[
yT (0) · · · yT (N0 + L − 1)

]T

e =
[
eT (0) · · · eT (N0 + L − 1)

]T
(8.1.2)

and X is a Toeplitz matrix built from the transmitted data according to:

X =

⎡

⎢⎢
⎢⎢
⎣

x(0) · · · · · · · · · x(N0 + L − 1)

x(−1) . . . x(N0 + L − 2)
...

. . .
...

x(−L) · · · · · · x(0) · · · x(N0 − 1)

⎤

⎥⎥
⎥⎥
⎦

(8.1.3)

130
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As long as Npost ≥ L, and the preamble is known to the receiver, the data
received during n = 0, . . . , N0 + L − 1 are sufficient statistics for detection of the
transmitted signal. Hence, provided that the receiver noise e(n) is spatially and
temporally white and that the propagation channel H(z−1) is known, the ML
detection of {s(0), . . . , s(N0 − 1)} amounts to minimizing the metric

N0+L−1∑

n=0

∥
∥∥y(n)−

L∑

l=0

H lx(n − l)
∥
∥∥
2
= ‖y − (

XT ⊗ Inr

)
h‖2 (8.1.4)

Equation (8.1.4) is central to both the design of transmission schemes and receiver
structures, and will be elaborated on later in this chapter.

An important question is under what conditions the ML decoding of {s(n)} can
give diversity, or more precisely, what diversity order is achievable. To answer this
question, we will capitalize on the formulation (8.1.1) of the received signal. Let X0

denote the Toeplitz matrix corresponding to the true transmitted data sequence
s0(n), and let X denote the Toeplitz matrix corresponding to any hypothetical
signal s(n) different from the true transmitted one. Also, let X0 − X be the
Toeplitz matrix associated with the error signal s0(n) − s(n). Assume that the
nrnt(L+1) elements of h are complex Gaussian with a positive definite covariance
matrix E[hhH ] > 0. Then, provided that the matrix X0 −X has full rank for all
possible error sequences {s0(n)− s(n)}, we know from Theorem 4.2 (see page 45)
that ML detection of s(n) achieves a diversity of order nrnt(L+1). The factor nr in
the diversity order will be called receive diversity order, the factor nt corresponds
to the order of transmit diversity, and the last factor L + 1 is associated with the
diversity gained from the multipath propagation. We will see below, as expected,
that not all possible transmission schemes (i.e., mappings between s(n) and x(n))
can achieve both transmit and multipath diversity simultaneously. In particular,
not all choices of preambles and postambles in the block transmission guarantee
that the matrix X0 − X has full rank.

Example 8.1: Delay diversity, revisited.
The “delay diversity” transmission scheme of Section 6.3.5 can easily be analyzed
in the present framework. Consider the code matrix (6.3.23) associated with delay
diversity (for nt = 2):

[· · · s(n) s(n + 1) · · · s(n + l) · · ·
· · · s(n − D) s(n + 1− D) · · · s(n + l − D) · · ·

]
(8.1.5)
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The matrix X in (8.1.3) has 2(L + 1) rows and takes on the form:

X =

⎡

⎢
⎢⎢
⎢⎢
⎣

· · · s(n) s(n + 1) · · · s(n + l) · · ·
· · · s(n − D) s(n + 1− D) · · · s(n + l − D) · · ·
· · · ...

...
...

... · · ·
· · · s(n − L) s(n + 1− L) · · · s(n + l − L) · · ·
· · · s(n − L − D) s(n + 1− L − D) · · · s(n + l − L − D) · · ·

⎤

⎥
⎥⎥
⎥⎥
⎦

(8.1.6)

If we assume that the symbol stream under consideration is preceded and followed
by a known preamble and postamble, similarly to Section 5.2.1, then it is not hard
to see that the matrix difference X0 − X formed according to (8.1.6) associated
with DD has rank L + D + 1 for any nonzero error signal {s0(n)− s(n)}. Hence,
provided that the covariance matrix of [hT

1 hT
2 ]T has full rank, it follows from

Theorem 4.2 (see page 45) that a diversity of order nr(L+D+1) is achieved. (See
also [Gore et al., 2001] for a direct proof of this fact.) Since X has 2(L+1) rows,
its rank cannot be more than 2(L + 1). It follows that the maximum achievable
diversity order is equal to 2nr(L + 1), which is achieved for D = L + 1. This
reinforces the conclusion in Section 6.3.5.

8.2 Space-Time OFDM (ST-OFDM)

For systems with one transmit antenna, we have seen in Chapter 5 that a
frequency-selective channel can be converted into parallel and independent flat
channels by using orthogonal-frequency division multiplexing (OFDM). In this
section we will show how the OFDM concept can be extended to nt > 1 transmit
antennas. The so-obtained scheme will be called space-time OFDM (ST-OFDM),
but it has also been referred to as space-frequency coding.

8.2.1 Transmit Encoding for ST-OFDM

The principal idea behind ST-OFDM is analogous to that of conventional OFDM,
but instead of operating on a single symbol stream of length N0 we assume that
now we are given ns streams (of length N0) in parallel. In words, the procedure
associated with ST-OFDM encoding can be described as follows. First, the symbol
streams are encoded via a space-time block code. Next, the set of code matrices is
inverse Fourier transformed. This way N0 space-time block matrices are obtained.
These are transmitted, after the addition of a cyclic prefix, as shown in Figure 8.1.
Note that like for conventional OFDM, the transmitted bursts do not have any
postambles.
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Figure 8.1. The ST-OFDM transmission scheme.

Consider a symbol sequence s(n) of length nsN0, and partition it into ns se-
quences of length N0 as follows:

s1(n) = s(n), n = 0, . . . , N0 − 1
s2(n) = s(n+ N0), n = 0, . . . , N0 − 1

sns(n) = s(n+ (ns − 1)N0), n = 0, . . . , N0 − 1
(8.2.1)

These symbol streams are “space-frequency” encoded by mapping them onto a
sequence of nt × N -matrices {Φ(n)}:

{s1(n), . . . , sns(n)} → {Φ(n)} (8.2.2)

where

Φ(n) =
[
φ1(n) · · · φN (n)

]
(8.2.3)

for n = 0, . . . , N0−1. For each n, the mapping in (8.2.2) is equivalent to the map-
ping implicit to space-time block coding for frequency-flat channels in Chapter 7.

The set of matrices {Φ(n)} is now inverse Fourier-transformed according to:

X(n) =
1√
N0

N0−1∑

k=0

Φ(k) exp
(

i
2π
N0

nk

)
(8.2.4)

and the matrices {X(n)}, n = 0, . . . , N0 − 1, are transmitted according to Fig-
ure 8.1.
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8.2.2 ML Detection

Like for conventional OFDM (see Section 5.2.2), we discard the received samples
during the preambles, even though they do contain information about the trans-
mitted data. Let us arrange the received data in matrices as follows:

Y (n) =

⎡

⎢
⎣

y1,1(n) · · · y1,N (n)
...

. . .
...

ynr ,1(n) · · · ynr,N (n)

⎤

⎥
⎦ (8.2.5)

where yk,l(n) is the sample received via the kth receive antenna during the lth
burst and the nth time interval. Then

Y (n) =
L∑

l=0

H lX(n − l) + E(n) (8.2.6)

for n = 0, . . . , N0 − 1, where E(n) is a noise matrix defined analogously to Y (n).
Note that the presence of the cyclic prefix implies that

X(n) = X(n + N0), n = −Npre, . . . ,−1 (8.2.7)

The ML metric for detection of the data is equal to:

N0−1∑

n=0

∥∥
∥∥
∥
Y (n)−

L∑

l=0

H lX(n − l)

∥∥
∥∥
∥

2

(8.2.8)

Similarly to conventional OFDM, this ML metric is equal to a sum of metrics, one
for each subcarrier. We state this result next.

Theorem 8.1: ML metric for ST-OFDM.
The ML metric for ST-OFDM is given by:

N0−1∑

n=0

∥∥
∥∥
∥
Y (n)−

L∑

l=0

H lX(n − l)

∥∥
∥∥
∥

2

=
N0−1∑

n=0

∥
∥∥
∥Z(n)− H

(
2π
N0

n

)
Φ(n)

∥
∥∥
∥

2

(8.2.9)

where

Z(n) =
1√
N0

N0−1∑

k=0

Y (k) · exp
(
− i

2π
N0

nk
)

H(ω) =
L∑

l=0

H l exp (−iωl)

(8.2.10)
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Proof: Follows by a calculation similar to that in Section 5.2.2.

To proceed, we need to specify the STBC matrix Φ(n) that is used in the transmit
encoding.

8.2.3 ST-OFDM with Linear STBC

If a linear space-time block code is used, then (8.2.2) takes on the following form:

Φ(n) =
ns∑

k=1

(
s̄k(n)Ak + is̃k(n)Bk

)
(8.2.11)

where {Ak,Bk} is a set of matrices as discussed in Chapter 7. The ML detec-
tion problem for a system using ST-OFDM with linear STBC decouples into N0

independent ML detection problems equivalent to minimization of N0 metrics for
frequency flat channels (see Section 7.1). A consequence of this important result,
which we state below, is that with ST-OFDM a diversity of order no more than
ntnr can be achieved.

Theorem 8.2: ML metric for ST-OFDM with linear STBC.
The ML metric for ST-OFDM with linear STBC is given by:

N0−1∑

n=0

∥∥z(n)− F (n)s′(n)
∥∥2 (8.2.12)

where H(ω) is defined in (8.2.10),

s′(n) �
[
s̄(n)
s̃(n)

]

F (n) �
[
F a(n) F b(n)

]

F a(n) �
[

vec

(

H
(
2π

n

N0

)
A1

)

· · · vec

(

H
(
2π

n

N0

)
Ans

)]

F b(n) �
[

i vec

(

H
(
2π

n

N0

)
B1

)

· · · i vec

(

H
(
2π

n

N0

)
Bns

)]

(8.2.13)

and

z(n) = vec(Z(n)) (8.2.14)

Proof: Follows by using Theorem 8.1 and paralleling the calculations in Sec-
tion 7.1.
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8.2.4 ST-OFDM with OSTBC

A particularly interesting special case of ST-OFDM occurs when orthogonal STBC
is used as an underlying space-time code. In this case (cf. Theorem 7.2 (see
page 106)):

Re
{
FH(n)F (n)

}
=

∥∥
∥∥H

( 2π
N0

n
)∥∥
∥∥

2

· I (8.2.15)

and the minimization of the ML metric for ST-OFDM reduces to that of minimiz-
ing

N0−1∑

n=0

∥
∥ŝ′(n)− s′(n)

∥
∥2 (8.2.16)

where

ŝ′(n) =
Re

{
FH(n)z(n)

}

∥
∥H

(
2π
N0

n
)∥∥2 (8.2.17)

which is equivalent to solving N0 independent OSTBC detection problems (cf. Sec-
tion 7.4). From Theorem 7.3 (see page 107) we conclude that

ŝ′(n) ∼ N

(

s′(n),
σ2

2
∥
∥H

(
2π
N0

n
)∥∥2

I

)

(8.2.18)

and that the SNR on each complex subcarrier is proportional to

SNR =

∥
∥∥H

(
2π
N0

n
)∥∥∥
2

σ2
(8.2.19)

Equation (8.2.19) reconfirms the fact that a diversity of order nrnt is achieved in
Rayleigh fading; i.e., that the multipath diversity is lost.

8.2.5 ST-OFDM with the Alamouti Code

For ST-OFDM based on the Alamouti code, the encoding in (8.2.11) becomes:

Φ(n) =
[
s1(n) s∗2(n)
s2(n) −s∗1(n)

]
(8.2.20)

During the second burst, we should take the complex conjugate of the data be-
fore inverse Fourier-transforming it. Since complex conjugation in the frequency
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Figure 8.2. The ST-OFDM transmission scheme with the Alamouti code (OSTBC with nt = 2).

domain corresponds to complex conjugation and time-reversal (to within a cyclic
shift of one sample period) in the time domain, the data transmitted during the
second burst is a time-reversed version of the Fourier transform of s∗k(n).

The ST-OFDM transmission scheme using the Alamouti code is depicted in
Figure 8.2. We call the first block of data the “regular burst” and the second block
of data the “time-reversed burst.” Both these bursts are transmitted with their
associated cyclic preambles.

8.2.6 ST-OFDM with Linear Precoding

It is clear from the above discussion (see Theorem 8.2) that the relation between
the transmitted symbols and the received data for an ST-OFDM system using
linear STBC can be written:

z(n) = F (n)s′(n) + e(n) (8.2.21)

where e(n) is white noise (that is also independent for different n). Since the
system is represented by N0 independent equations of the form (8.2.21) (one for
each n), which can be written concisely as

⎡

⎢
⎣

z(0)
...

z(N0 − 1)

⎤

⎥
⎦ =

⎡

⎢⎢
⎢⎢
⎣

F (0) 0 · · · 0

0 F (1)
. . .

...
...

. . . . . . 0
0 · · · 0 F (N0 − 1)

⎤

⎥⎥
⎥⎥
⎦
·

⎡

⎢
⎣

s′(0)
...

s′(N0 − 1)

⎤

⎥
⎦+

⎡

⎢
⎣

e(0)
...

e(N0 − 1)

⎤

⎥
⎦

(8.2.22)

it is clear that the error performance associated with the nth symbol s′(n) is de-
termined only by F (n), and a manifestation of this fact is that multipath diversity
is lost.
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A technique that can recover the multipath diversity for an ST-OFDM (a spe-
cial case of which applies to the classical OFDM system as well) is linear precoding.
The main idea behind linear precoding for OFDM (which has been studied by sev-
eral authors; see, e.g., [Xia, 2001], [Liu et al., 2001b]) is to spread energy from
a particular symbol not only on one subcarrier but onto several independently fad-
ing subcarriers at a time. In its most general form, the aggregate vector of symbols
s′ is simply pre-multiplied by a matrix Ψ chosen such that the ML decoding yields
full diversity.

In general, although it can yield a significant increase in error performance,
linear precoding destroys the decoupling that is one of the most important bene-
fits of OFDM. This means in particular that the detection problem becomes an
integer-constrained least-squares problem (see Section 9.1.3), which is in general
computationally much more demanding to solve than carrying out the fast Fourier
transforms required by OFDM. Hence a linearly precoded OFDM system “com-
petes” on different grounds and must be compared to other block-transmission
methods that (unlike ST-OFDM) are not designed with low receiver complexity
as a major goal. A more detailed discussion of linearly precoded ST-OFDM, and
how it compares to other transmission techniques, is outside the scope of this text.

8.2.7 Discussion

Using the ST-OFDM scheme, and assuming that there are no extra guard intervals
between the bursts, we transmit nsN0 symbols during NN0+NNpre time intervals.
The rate of ST-OFDM is therefore:

RST-OFDM =
nsN0

NN0 + NNpre

≤ nsN0

NN0 + NL
(8.2.23)

In the same way as for conventional OFDM (see Section 5.2.2), all signal pro-
cessing associated with ST-OFDM can be carried out with N0-point FFTs. The
price paid for this simple receiver structure is the loss of multipath diversity. In
analogy to the case of transmission with a single antenna (see Section 5.2), the
reason for this diversity loss is the cyclic preamble.

A transmission scheme that is somewhat related to ST-OFDM with OSTBC,
but which uses a fixed (and known to the receiver) preamble, and that can be
used to achieve multipath diversity as well, is the TR-OSTBC scheme that is
discussed in Section 8.3. Although the burst structure of TR-OSTBC is similar to
that of ST-OFDM with the Alamouti code, the receiver structure associated with
TR-OSTBC is very different from that of ST-OFDM.
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8.3 Time-Reversal OSTBC (TR-OSTBC)

The space-time OFDM technique discussed in Section 8.2 is an easy way to achieve
transmit diversity, but the simplicity of the receiver comes at the cost of a lost
multipath diversity. An alternative to ST-OFDM that has shown some promise
both in terms of performance and computational complexity is the so-called time-
reversal OSTBC (TR-OSTBC) scheme. TR-OSTBC was originally proposed in
[Lindskog and Paulraj, 2000] and later extended and analyzed in [Flore and
Lindskog, 2000], [Stoica and Lindskog, 2002], [Larsson et al., 2002c].
This section is devoted to this transmission technique. We shall mostly treat the
case of nt = 2 (the extension to nt > 2 is discussed in Section 8.3.7).

For nt = 2, TR-OSTBC is similar to ST-OFDM based on the Alamouti code
in what concerns the transmission scheme, but TR-OSTBC and ST-OFDM use
different preambles and postambles and the corresponding receiver structures are
quite different. Both methods partition the signal block into separate bursts which
are related to each other in a similar manner to the elements of an Alamouti matrix
(see Section 8.2.5). However, while ST-OFDM relies on encoding via the Fourier
transform together with a cyclic prefix, TR-OSTBC uses a known preamble and
postamble. We will show that TR-OSTBC approximately decouples the frequency
selective MIMO channel into parallel and independent frequency selective SISO
channels, to which standard SISO equalization methods can be applied. Finally,
while ST-OFDM achieves a diversity of order nrnt, we will show that TR-OSTBC
can achieve a diversity of order nrnt(L + 1).

8.3.1 Transmission Scheme

Similarly to ST-OFDM, consider the transmission of 2N0 symbols
{s(0), . . . , s(2N0 − 1)} and partition the data into two sub-streams:

s1(n) = s(n), n = 0, . . . , N0 − 1
s2(n) = s(n+ N0), n = 0, . . . , N0 − 1

(8.3.1)

Also, let

s(n) =
[
s1(n)
s2(n)

]
(8.3.2)

The TR-OSTBC transmission scheme is illustrated in Figure 8.3. We transmit
a regular burst and a time-reversed burst in the same way as for ST-OFDM with
the Alamouti code in Section 8.2.5. However, in the present case, these bursts
will in general have preambles and postambles which are fixed and known to the
receiver. When forming the time-reversed burst, the regular burst including its
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Figure 8.3. The TR-OSTBC transmission scheme.
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Figure 8.4. The TR-OSTBC transmission scheme without midamble. In the upper part of the
figure, the time indices associated with the regular burst are shown, and the lower part of the
figure shows the time indices for the time-reversed burst.

preamble and postamble is time-reversed; hence the preamble of the time-reversed
burst contains samples from the postamble of the regular burst, and vice versa.
For notational simplicity, we will assume that Npre = Npost � Np in the rest of this
section.

Between the postamble of the regular burst and the preamble of the time-
reversed burst, we can optionally transmit a midamble of length Nm that can be
used for synchronization or channel estimation purposes; the structure of the so-
obtained transmission scheme is reminiscent of the burst structure in GSM [Mouly
and Pautet, 1992]. In both cases, the postamble corresponding to the regular
burst and the preamble corresponding to the time-reversed burst can be considered
as a part of an Nm + 2Np symbols long midamble whose head and tail symbols
exhibit a special conjugate symmetry property. Also, in the special case that no
midamble is desired and all postambles and preambles contain zeros, or whenever
the postamble of the regular burst and the preamble of the time-reversed burst
possess certain conjugate symmetry properties, these postambles and preambles
can be merged into one sequence of length Np (see Figure 8.4).
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If we assume that sk(n) is defined also for n = −Np, . . . ,−1 (corresponding to
the preamble) and for n = N0, . . . , N0+Np − 1 (corresponding to the postamble),
the transmitted vectors can be written as follows.

Regular burst: During the time intervals n = −Np, . . . , N0+Np−1, we transmit
the first stream s1(n) through the first antenna and the second stream s2(n) via
the second antenna. In the framework of Section 2.2 the transmitted signal is:

x(n) =
[
s1(n)
s2(n)

]
, n = −Np, . . . , N0 + Np − 1 (8.3.3)

Time-reversed burst: Following the midamble, we transmit the time-reversed
data (including its preamble and the postamble) s∗2(N0−1−n) via the first antenna
and −s∗1(N0− 1−n) via the second antenna for n = −Np, . . . , N0+Np− 1. Using
the notation of Section 2.2:

x(n) =
[

s∗2(N0 − 1− n)
−s∗1(N0 − 1− n)

]
, n = −Np, . . . , N0 + Np − 1 (8.3.4)

8.3.2 ML Detection

For TR-OSTBC it turns out to be simpler to work with an FIR filter representation
instead of the matrix algebraic formulation used so far in this chapter.

Let y1(n), n = 0, . . . , N0 + Np − 1, be a sequence of nr-vectors that contain
the data received during the regular burst. This data can be expressed as:

y1(n) =
[
h1(z−1) h2(z−1)

]
[
s1(n)
s2(n)

]
+ e1(n) (8.3.5)

for n = 0, . . . , N0 +Np − 1. Note that y1(n) depends on the data symbols as well
as the preamble and postamble. Similarly, let y2(n), n = 0, . . . , N0 + Np − 1, be
the data received during the time-reversed burst (the reason for the notation (̌·)
will soon become clear):

y̌2(n) =
[
h1(z−1) h2(z−1)

]
[

s∗2(N0 − 1− n)
−s∗1(N0 − 1− n)

]
+ ě2(n) (8.3.6)

for n = 0, . . . , N0 + Np − 1. These data depend on the data symbols as well as
the preamble and postamble (but not the midamble). Since y1(n) and y̌2(n) are
collected during disjunct time intervals, to simplify the notation we use the same
time index n for y1(n) and for y̌2(n) even though they correspond to different
absolute time instants.
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In (8.3.5) and (8.3.6), the terms e1(n) and ě2(n) contain noise that we assume,
as before, to be spatially and temporally white complex Gaussian with variance
σ2. In particular, this means that

E

[ [
e1(n)
ě2(n)

]
[
eH
1 (s) ěH

2 (s)
]
]

= σ2δn−sI (8.3.7)

Next we arrange the received data in a 2nr-vector as follows (somewhat anal-
ogous to what was done for the Alamouti code, the data received during the
time-reversed burst is time-reversed and complex conjugated):

y(n) �
[
y1(n)
y2(n)

]
=

[
y1(n)

y̌∗
2(N0 + Np − 1− n)

]
= H(z−1)s(n) + e(n) (8.3.8)

for n = 0, . . . , N0 + Np − 1 where we have implicitly defined the 2nr × 2 causal
matrix filter

H(z−1) =
[

h1(z−1) h2(z−1)
−z−Nph∗

2(z) z−Nph∗
1(z)

]
(8.3.9)

and the 2nr-vector of noise

e(n) =
[

e1(n)
ě∗
2(N0 +Np − 1− n)

]
(8.3.10)

The noise e(n) in (8.3.10) is still both spatially and temporally white. (Note the
similarity between (8.3.9) and the matrix in (6.3.8) for the Alamouti code.)

To verify (8.3.8), observe from (8.3.6) that

y̌∗
2(N0 + Np − 1− n) =

L∑

l=0

(
− h

(l)∗
2 s1(N0 − 1− [N0 + Np − 1− n − l])

+ h
(l)∗
1 s2(N0 − 1− [N0 + Np − 1− n − l])

)

=
L∑

l=0

(
− h

(l)∗
2 s1(n + l − Np) + h

(l)∗
1 s2(n + l − Np)

)

=− z−Nph∗
2(z)s1(n) + z−Nph∗

1(z)s2(n)
(8.3.11)

for n = 0, . . . , N0 + Np − 1.
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Let y(n) be the received data as defined in (8.3.8). Then the ML metric for
symbol detection is given by:

N0+L−1∑

n=0

‖y(n)− H(z−1)s(n)‖2 (8.3.12)

Apparently, the detection of s1(n) and s2(n) is coupled. While in principle a se-
quence detector such as the Viterbi algorithm could be applied directly to (8.3.12),
the computational complexity of such an approach would be high. In particular,
due to the coupling between s1(n) and s2(n) in (8.3.12), the number of states in the
trellis diagram would increase from |S|L to |S|2L. In Section 8.3.4 below we show
how the ML metric in (8.3.12) can be approximately decoupled into a sum of two
ML metrics associated with SISO channels. An important consequence of this de-
coupling is that a standard scalar Viterbi decoder (with memory length L) can be
employed for equalization. However, before discussing this decoupling, we analyze
the order of diversity that is achievable by TR-OSTBC using ML detection.

8.3.3 Achievable Diversity Order

We will next show that the ML detection of TR-OSTBC by minimizing the metric
in (8.3.12) yields a diversity of order 2nr(L + 1). While this result follows easily
in the framework of this chapter, the first published proof was due to [Zhou and
Giannakis, 2001].

Let us study the matrix X in (8.1.3) associated with TR-OSTBC. After ap-
propriate permutation, this matrix can be written as:

XT �
[
X11 X12

X21 X22

]
(8.3.13)

where

X11 =

⎡

⎢⎢
⎢⎢
⎢⎢
⎢
⎢⎢
⎢⎢
⎣

s1(0) s1(−1) · · · s1(−L)
s1(1) s1(0) s1(1− L)
...

. . .
...

... s1(0)

...
...

s1(N0 + L − 2) s1(N0 + L − 3) s1(N0 − 2)
s1(N0 + L − 1) s1(N0 + L − 2) · · · s1(N0 − 1)

⎤

⎥⎥
⎥⎥
⎥⎥
⎥
⎥⎥
⎥⎥
⎦

(8.3.14)
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X12 =

⎡

⎢
⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

s∗2(N0 − 1) s∗2(N0) · · · s∗2(N0 + L − 1)
s∗2(N0 − 2) s∗2(N0 − 1) s∗2(N0 + L − 2)

...
. . .

...
... s∗2(N0 − 1)
...

...
s∗2(1− L) s∗2(2− L) s∗2(1)
s∗2(−L) s∗2(1− L) · · · s∗2(0)

⎤

⎥
⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦

(8.3.15)

X21 =

⎡

⎢
⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

s2(0) s2(−1) · · · s2(−L)
s2(1) s2(0) s2(1− L)
...

. . .
...

... s2(0)

...
...

s2(N0 + L − 2) s2(N0 + L − 3) s2(N0 − 2)
s2(N0 + L − 1) s2(N0 + L − 2) · · · s2(N0 − 1)

⎤

⎥
⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦

(8.3.16)

X22 = −

⎡

⎢
⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

s∗1(N0 − 1) s∗1(N0) · · · s∗1(N0 + L − 1)
s∗1(N0 − 2) s∗1(N0 − 1) s∗1(N0 + L − 2)

...
. . .

...
... s∗1(N0 − 1)
...

...
s∗1(1− L) s∗1(2− L) s∗1(1)
s∗1(−L) s∗1(1− L) · · · s∗1(0)

⎤

⎥
⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦

(8.3.17)

For a matrix X̆ defined as in (8.3.13) but corresponding to a hypothetical error
signal s̆(n) = s0(n)− s(n), we have that

X̆
∗
X̆

T
=

[
X̆

H
11X̆11 + X̆

H
21X̆21 X̆

H
11X̆12 + X̆

H
21X̆22

X̆
H
12X̆11 + X̆

H
22X̆21 X̆

H
12X̆12 + X̆

H
22X̆22

]

(8.3.18)

Under the assumption of known preambles and postambles, s̆(n) is identical to
zero for n = −Np, . . . ,−1 and n = N0, . . . , N0+Np− 1. By using this observation

it can be shown that both diagonal blocks of X̆X̆
H
are positive definite and that

the two off-diagonal blocks of X̆X̆
H

are equal to zero. To show the latter, it is
useful to observe that the elements of the off-diagonal blocks can be expressed as
convolution sums. Hence the matrix X̆ has full rank for any s̆(n) �= 0. Application
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of Theorem 4.2 (see page 45) then shows that TR-OSTBC can achieve a diversity
order equal to 2nr(L+1), provided that ML decoding is used to detect the symbols.

8.3.4 Decoupling, Matched Filtering and Approximate ML Equalization

The key property of TR-OSTBC that enables a decoupled detector structure is
that H(z−1) in (8.3.9) is “unitary”:

HH(z)H(z−1) =
[
hH
1 (z) −zNphT

2 (z
−1)

hH
2 (z) zNphT

1 (z
−1)

] [
h1(z−1) h2(z−1)

−z−Nph∗
2(z) z−Nph∗

1(z)

]

=
(
hH
1 (z)h1(z

−1) + hH
2 (z)h2(z

−1)
)
I

= γ(z−1)I =
L∑

l=−L

γlz
−lI

(8.3.19)

where the constants γ−l = γ∗
l are the coefficients of the following scalar filter:

γ(z−1) � hH
1 (z)h1(z

−1) + hH
2 (z)h2(z

−1) (8.3.20)

This property of H(z−1) can be seen as a direct extension of the orthogonality
property of the Alamouti code (cf. the discussion in Section 6.3.1).

Let us now make use of (8.3.19) to study the ML metric in (8.3.12):

N0+L−1∑

n=0

‖y(n)− H(z−1)s(n)‖2

=
N0+L−1∑

n=0

‖y(n)‖2 − 2Re

{
N0+L−1∑

n=0

(
H(z−1)s(n)

)H
y(n)

}

+
N0+L−1∑

n=0

(
H(z−1)s(n)

)H(
H(z−1)s(n)

)

(8.3.21)

The second term of (8.3.21) can be approximated in a way similar to (5.2.11):

Re

{
N0+L−1∑

n=0

(
H(z−1)s(n)

)H
y(n)

}

≈ Re

{
N0+L−1∑

n=0

sH(n) · HH(z)y(n)

}

(8.3.22)

where, like in Section 5.2.2, all approximations denoted by “≈” are attributable
to end-effects. The third term in (8.3.21) can be approximated using (8.3.19) in a
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manner similar to (5.2.13):

N0+L−1∑

n=0

(
H(z−1)s(n)

)H(
H(z−1)s(n)

)

≈Re
{

N0+L−1∑

n=0

(
γ0s

H(n)s(n) + 2
L∑

l=1

γls
H(n)s(n − l)

)
} (8.3.23)

Equations (8.3.22) and (8.3.23) show that minimizing the ML metric in (8.3.12)
is equivalent (to within approximations attributable to end-effects) to maximizing
the following metric:

Re

{
N0+L−1∑

n=0

s∗1(n)
(
z1(n)−

L∑

l=1

γls1(n − l)− 1
2
γ0s1(n)

)}

+Re

{
N0+L−1∑

n=0

s∗2(n)
(
z2(n)−

L∑

l=1

γls2(n − l)− 1
2
γ0s2(n)

)}
(8.3.24)

where

z(n) �
[
z1(n)
z2(n)

]
= HH(z)y(n) (8.3.25)

From (8.3.24) we can see that the approximate ML detection of s1(n) is decou-
pled from the detection of s2(n) and that s1(n) and s2(n) can be detecting using
a Viterbi algorithm with memory length L. Furthermore, the metric in (8.3.24)
is a function of the received data y(n) only via z(n) and hence z(n) is an (ap-
proximate) sufficient statistic for detection. The decoupling of the detection of
s1(n) and s2(n) follows from the filtering in (8.3.25) and the unitary property of
H(z−1).

The filtering of the received data y(n) in (8.3.25) with HH(z) can be inter-
preted as a matched filtering, and the output of the matched filter can be spelled
out as follows:

z(n) = HH(z)y(n)

= HH(z)H(z−1)s(n) + HH(z)e(n)

= γ(z−1)s(n) + HH(z)e(n)

(8.3.26)

Equation (8.3.26) can be rewritten in the equivalent form

z1(n) = γ(z−1)s1(n) + hH
1 (z)e1(n)− zNphT

2 (z
−1)e2(n)

z2(n) = γ(z−1)s2(n) + hH
2 (z)e1(n) + zNphT

1 (z
−1)e2(n)

(8.3.27)
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Note that the noise term in (8.3.26) is spatially white since its power spectral
density is equal to

σ2 · HH(z)H(z−1) = σ2γ(z−1)I (8.3.28)

Hence the noise terms of z1(n) and z2(n) in (8.3.27) are uncorrelated with one
another, but they are not temporally white.

8.3.5 Linear Equalization

For large L and large symbol constellations, applying a Viterbi algorithm to max-
imize (8.3.24) may be computationally burdensome. An alternative to such a pro-
cedure is to use a linear MMSE equalizer that operates directly on the matched
filtered sequence z(n) in (8.3.26). Such an MMSE equalizer can be derived follow-
ing the steps in Section 5.2.1.

Without loss of generality, let us consider the detection of s1(n). Then the
sequence

z1(n) = γ(z−1)s1(n) + hH
1 (z)e1(n)− zNphT

2 (z
−1)e2(n) (8.3.29)

is approximately a sufficient statistic for detection. We seek a (scalar) linear filter
ξ(z−1) of length 2M + 1 (where 2M ≥ L) such that the output of the filtered
sequence

ŝ1(n) = ξ(z−1)z1(n) (8.3.30)

recovers s1(n) in a MMSE sense. Assume that s1(n) is statistically white with
known variance σ2s . Paralleling the derivation in Section 5.2.1 (with some differ-
ences; for instance, the noise in the present case is colored), we find that the vector
of optimal filter coefficients

ξ =
[
ξ−M · · · ξM

]T (8.3.31)

is given by:

ξ =
(
ΓHΓ+

σ2

σ2s
Γ
)−1
ΓHe0 (8.3.32)
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where Γ is a (2M + 1)× (2M + 1) Toeplitz matrix defined according to:

Γ =

⎡

⎢
⎢⎢
⎢⎢
⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

γ0 γ−1 · · · γ−L 0 · · · 0

γ1 γ0
. . . . . . . . .

...
...

. . . . . . 0

γL
. . . . . . γ−L

0
. . . . . .

...
...

0 · · · 0 γL · · · γ0

⎤

⎥
⎥⎥
⎥⎥
⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦

(8.3.33)

Also, e0 is a (2M + 1)-vector whose (M + 1)th element is equal to one and all
other elements are equal to zero.

The computation of the MMSE filter coefficients in (8.3.32) requires the so-
lution of a linear system of equations with 2M + 1 unknowns. This is far less
burdensome than solving the original ML problem (8.3.12) via the Viterbi al-
gorithm or treating it as an integer-constrained LS problem (see Section 9.1.3).
However, note that no approximations are involved in the latter techniques.

8.3.6 Numerical Performance Study

In this section we present a few numerical examples (see also [Larsson et al.,
2002c]) that compare the performance of TR-OSTBC with that of delay diversity
(see Section 6.3.5). Whilst DD is not optimal in any known sense, we chose it for
comparison because of its simplicity; DD is the simplest space-time trellis code
in terms of decoding complexity. As discussed in Section 6.3.5, in a two transmit
antenna system using DD a given symbol stream is transmitted through the first
antenna, and the same stream delayed by D symbol intervals is transmitted via
the second antenna. In this way an artificial extra delay spread of D is induced in
the channel.

Note that in contrast to TR-OSTBC, the DD scheme requires a MLSD at the
receiver, even if the propagation channel is not frequency-selective (i.e., L = 0).
In general, the DD scheme requires an MLSD with memory length L + D while
TR-OSTBC only requires an MLSD with memory length L. As a consequence,
the equalization complexity of TR-OSTBC is lower than that of the DD scheme.
Also, note that TR-OSTBC achieves a diversity of order 2(L + 1) (for nr = 1),
whereas DD achieves a diversity of order L+D+1. Hence, for DD to achieve the
same diversity order as that of TR-OSTBC, we require that L+D+1 = 2(L+1)
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DD (delay=1) DD (delay=L + 1) TR-OSTBC
Complexity order |S|L+1 |S|2L+1 |S|L
Diversity order L + 2 2(L + 1) 2(L + 1)

Table 8.1. Relative equalization complexity and diversity orders (for nr = 1) of TR-OSTBC
and DD as a function of the physical channel length L + 1, when using an MLSD implemented
by the Viterbi algorithm.

which holds if D = L+1 (note that the diversity order of DD cannot be increased
by further increasing D). These observations are summarized in Table 8.1.

In the examples below we transmit bursts containing N0 = 120 BPSK mod-
ulated data bits. The system under consideration has one receive antenna, and
we consider both conventional transmission with one transmit antenna, and TR-
OSTBC with two transmit antennas as well as DD with two transmit antennas
and a delay of D = 1. For TR-OSTBC, the symbol stream is split into two sub-
streams of length N0/2 = 60 bits each, and transmitted through the two antennas
as in Figure 8.3. A midamble of length Nm = 26 is used for channel estimation
in those simulations where the channel is assumed unknown. The preambles and
postambles are of length Np = 5 and consist of zeros only. In the case of transmit
diversity, the amplitudes of the signals fed to the two antennas are normalized
such that the total transmission power remains the same as if we had one transmit
antenna.

Example 8.2: TR-OSTBC vs. Delay diversity.
We compare the performance of TR-OSTBC with that of DD (with D = 1). In
Figure 8.5 the estimated bit-error-rate (BER) is plotted versus the SNR. A stan-
dard Viterbi equalizer is employed both to maximize the metrics in (8.3.24), and
to decode the transmitted message in the case of DD. We consider two channels
in this simulation. The first channel (“flat”) consists of a single Rayleigh fading
tap and is therefore not frequency-selective (here L = 0). The second channel
(“delay-spread”) is of length L + 1 = 2 and consists of two independent Rayleigh
fading taps with the same average power. The channels are normalized such that

E

[
L∑

l=0

∥∥hl

∥∥2
]

= 1 (8.3.34)

and they are assumed to be known to the receiver. We can make a number of
observations from Figure 8.5.

1. For the flat channel, TR-OSTBC gives a performance gain of around 5 dB
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at 1% BER compared to a conventional single-antenna transmission. This
difference is entirely due to the antenna diversity gain offered by the two
transmit antennas (TR-OSTBC is equivalent to OSTBC in this case and
hence it achieves a diversity of order 2). The performance of the DD scheme
is of the same order as that of TR-OSTBC. The performance gain of DD
compared to single-antenna transmission is due to the artificial multipath
induced by the DD scheme; DD also achieves a diversity of order 2 in this
case.

2. For the case when the channel has a delay-spread, a multipath diversity
gain is obtained from the propagation channel. The BER for single-antenna
transmission and that for DD with 2 transmit antennas and a flat channel are
almost the same. This is not surprising: we can expect the natural multipath
and the artificial multipath induced by DD to influence the performance in
a similar way.

3. The TR-OSTBC scheme outperforms DD when the physical channel has a
delay spread. This is expected in view of the above discussion about diversity
order.

Example 8.3: Linear equalization vs. Viterbi algorithm.
We compare the performance of the MMSE equalizer derived above to that of the
Viterbi equalizer studied in Example 8.2. The “delay-spread” channel from Exam-
ple 8.2 is used. Figure 8.6 shows the results (we show only the results for single-
antenna transmission and for TR-OSTBC). It is clear that the Viterbi equalizer
outperforms the MMSE receiver, as expected [Proakis, 2001, Chap. 10]. The
difference in this case is moderate, which can be explained by the fact that the
delay spread is relatively small (and hence the transfer function of the channel is
unlikely to have many points with a small value).

Example 8.4: TR-OSTBC for GSM Channels.
In this example we use simulation parameters that (to some degree) resemble
the Global System for Mobile communications (GSM) standard [Stüber, 2001],
[Mouly and Pautet, 1992]. The number of symbols per block and the midamble
are as before. We use binary modulation with an ideal pulse-shape (this is a
deviation from the GSM standard) and the GSM channel model “typical urban”
[ETSI, 2002], which has a delay spread of around 1µs (corresponding to ∼0.25
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Figure 8.5. Results for Example 8.2. Comparison between TR-OSTBC and delay diversity (DD)
for a flat Rayleigh fading channel and a fading multipath channel with two taps, respectively. A
Viterbi equalizer was used, and the channel was assumed to be known to the receiver.

symbol intervals). This channel model is defined in continuous time and hence the
delay spread of the corresponding discrete-time channel is larger than 0.25 symbol
intervals. For this reason, and also to guarantee robustness to higher delay spread
and synchronization errors, we use the Viterbi equalizer along with a channel with
L+1 = 3 taps. Figure 8.7 shows the results. The performance gain we get from the
extra transmit antenna is evident. If the channel is known, TR-OSTBC performs
better than DD (as expected). When the channel is unknown, we use the semiblind
approach to estimate it (see Section 9.5) and in this case the performances of DD
and TR-OSTBC are almost the same. We attribute this behavior to the fact that
for TR-OSTBC, 2(L + 1) = 6 parameters have to be estimated while for DD the
channel is parameterized by only L+2 = 4 unknowns. In fact, the main advantage
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Figure 8.6. Results for Example 8.3. Comparison between MMSE and Viterbi equalizations for
single-antenna transmission and for the TR-OSTBC scheme. A delay spread channel with two
taps (L + 1 = 2) was used. The channel was assumed to be known by the receiver.

of TR-OSTBC over DD in this case may be the lower decoding complexity. This
is particularly important for systems evolving from GSM such as “enhanced data
for global evolution” (EDGE) (see, e.g., [Rappaport, 2002]) which uses 8-PSK
modulation; for such systems using large symbol constellations the number of
states in the Viterbi decoder must be kept as small as possible.

8.3.7 TR-OSTBC for nt > 2

Time-reversal OSTBC can be extended to more than two transmit antennas. Here
we present a brief review of the results in [Stoica and Lindskog, 2002] which
proposed a rate-3/4 TR-OSTBC scheme for three transmit antennas, and a rate-
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Figure 8.7. Results for Example 8.4. Comparison for a GSM-like system using the channel
model “typical urban.”

1/2 construct for four or more transmit antennas. We show the main results in
a schematic form only, omitting the discussion about preambles and postambles,
and referring the reader to the cited paper for proofs of the required properties for
TR-OSTBC. In the following equations, sn is a general symbol sequence of length
N0 and

←−
(·) denotes time-reversal.

Three transmit antennas. Here a 3N0-symbol data sequence is split into three
sub-streams of length N0, {sn} for n = 1, . . . , 3, and we transmit (cf. (7.4.9))

⎡

⎣
s1 −←−s ∗

2
←−s ∗
3 0

s2
←−s ∗
1 0 −←−s ∗

3

s3 0 −←−s ∗
1

←−s ∗
2

⎤

⎦

︸ ︷︷ ︸
→ time

}

↓ space
(8.3.35)
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during 4N0 time intervals. The data rate is 3/4 (neglecting the loss incurred by
the transmission of postambles and preambles).

Four transmit antennas. A rate-1/2 TR-OSTBC scheme can be obtained by
using the OSTBC construct of [Ganesan and Stoica, 2001c] (also see Ap-
pendix B). We transmit:

⎡

⎢⎢
⎣

s1 s2 s3 −s4
←−s ∗
1

←−s ∗
2

←−s ∗
3 −←−s ∗

4

−s2 s1 s4 s3 −←−s ∗
2

←−s ∗
1

←−s ∗
4

←−s ∗
3

−s3 −s4 s1 −s2 −←−s ∗
3 −←−s ∗

4
←−s ∗
1 −←−s ∗

2

s4 −s3 s2 s1
←−s ∗
4 −←−s ∗

3
←−s ∗
2

←−s ∗
1

⎤

⎥⎥
⎦

︸ ︷︷ ︸
→ time

}

↓ space
(8.3.36)

during 8N0 time intervals.
It appears that the rate-3/4 OSTBC for nt = 4 given in Example 7.4 (see

page 104) cannot be extended to obtain a TR-OSTBC for four transmit antennas.
Indeed, to obtain such an extension, we need an OSTBC matrix whose rows all
contains “all-star elements” (i.e., elements that are all complex conjugated), or
“no-star elements.” Such a matrix does not exist. To see this, we can argue by
contradiction. Assume that an OSTBC matrix X with these properties exists,
and consider a fictitious ISI-free system (as in Chapter 7) with nt = 4 transmit
and nr = 1 receive antennas. Let s be the corresponding 3×1 signal vector. Then
after appropriate complex conjugation and arrangement (see Section 8.3.2), the
received signal can be written as:

y = Hs + e (8.3.37)

for some 4× 3 matrix H that contains the channel gains and their complex conju-
gates, and for which HHH = I (assuming ‖h‖2 = 1). But this would imply that
H is a rate-1 OSTBC matrix for three transmit antennas, and from Appendix B
we know that such a matrix does not exist.

The TR-OSTBC schemes for more than two transmit antennas may in fact
be of a more theoretical than practical interest (with the possible exception of
three transmit antennas). First, these coding schemes do not provide full rate and
hence an increase in the constellation size is necessary to achieve a high data rate
(in terms of bits/sec/Hz). This may be undesirable in practice (in particular, it
increases the receiver complexity). Second, if we have three transmit antennas, the
TR-OSTBC scheme requires the channel to be constant during 4N0 time intervals,
and for the case of four transmit antennas the channel must remain constant over
8N0 time intervals. This may be hard to achieve in practice if N0 is large. Finally,
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it is known that the maximum capacity that can be achieved by OSTBC is less
than the channel capacity except for in the case of two transmit antennas and
one receive antenna (cf. Section 7.4.3). Hence, while OSTBC should be a good
choice for improving the performance of a single-antenna communication system
by employing an extra transmitting antenna, it can be argued on information
theoretical grounds that OSTBC may be a less attractive choice for high-rate
systems or systems with many antennas. Similar conclusions may hold for TR-
OSTBC.

8.3.8 Discussion

In the TR-OSTBC scheme (for nt = 2) assuming that there is no extra guard
interval between the bursts, we transmit 2N0 symbols during 2N0 + 4Np + Nm

time intervals. Since the last postamble of the transmission may coincide with
the first preamble of the next block, the effective rate is 2N0/(2N0 + 3Np + Nm).
Moreover, if no midamble is present, the postamble of the regular burst and the
preamble of the time-reversed burst can be merged into an Np long midamble (see
Figure 8.4) and consequently in this case the rate is the same as that of ST-OFDM:

RTR-OSTBC =
N0

N0 + Np
≤ N0

N0 + L
(8.3.38)

8.4 Summary and Discussion

This chapter has provided a discussion on linear STBC for frequency-selective
channels. We started in Section 8.1 by analyzing the conditions under which a
maximal diversity order, i.e., nrnt(L+ 1) can be achieved. It turned out that one
such condition is that the difference between any two block-Toeplitz data matrices
(see (8.1.3)), corresponding to two distinct transmitted sequences, must have full
rank. Given that result, we also revisited the delay diversity scheme introduced in
Section 6.3.5 and re-established its diversity properties.

Next in Section 8.2 we studied space-time OFDM in some detail. ST-OFDM
is a way of compromising the performance for a gain in computational efficiency;
specifically, while all receiver processing can be simply done via FFT, the multipath
diversity is lost and therefore ST-OFDM only achieves a diversity order equal to
nrnt. ST-OFDM is reminiscent of conventional OFDM (see Section 5.2.2): by
using a cyclic preamble and taking the inverse Fourier transform of the data,
the frequency-selective channel is effectively transformed into parallel flat fading
space-time channels. Further discussion on and developments of ST-OFDM, and
combinations with other coding schemes, can be found in, for example, [Agrawal
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et al., 1998], [Blum et al., 2001], [Bölcskei and Paulraj, 2000b].
We also studied (in Section 8.3) a transmission scheme called time-reversal OS-

TBC (TR-OSTBC) that is related to ST-OFDM, but which does not convert the
space-time channel into parallel flat fading channels. Instead, TR-OSTBC decou-
ples (to within a certain approximation) the space-time channel into ns parallel
and independent frequency-selective SISO channels. The main appealing feature
of TR-OSTBC is that standard coding and equalization procedures (such as the
Viterbi equalizer) can be used on each equivalent SISO channel.

The present chapter is based on elements from Chapter 5 and Chapter 7 along
with the discrete-time models in Section 2.2. Coding for frequency-selective chan-
nels will not be further discussed in this text, except in Section 9.4.1 where we treat
optimal training for frequency-selective channels (both in the context of OFDM
and conventional transmission).

8.5 Problems

1. Prove that the diagonal blocks of the matrix in (8.3.18) are positive definite,
and that the off-diagonal blocks of this matrix are equal to zero.

2. Prove Equation (8.3.32).

3. Discuss the capacity of a ST-OFDM system (with a cyclic prefix) for
frequency-selective channels, and compare it with the channel capacity. Is
there any information-theoretical penalty imposed by the OFDM structure?

Hint: The capacity of OFDM and the channel capacity can be expressed by
(3.2.1) using a matrix H that is diagonal, respectively Toeplitz.

4. Prove Theorems 8.1 and 8.2.



Chapter 9

COHERENT AND NON-COHERENT

RECEIVERS

This chapter discusses receiver structures for systems that use transmit diversity.
We begin by studying the problem of detecting linear STBC coherently, and follow-
ing this we discuss noncoherent detection. We also discuss related topics including
optimal training, differential detection and detection in the presence of frequency
offsets. For convenience, most of our discussion focuses on flat channels, although
many of the presented results extend in a straightforward manner to frequency-
selective channels as well (provided that the discrete-time models in Section 2.2
are valid, and that accurate timing synchronization is possible). While Chap-
ter 4 focused on error probabilities and code design criteria, the present chapter
is primarily devoted to practical detection methods.

9.1 Coherent Detection of Linear STBC

In this chapter we assume that Nb STBC matrices (each of length N) are transmit-
ted consecutively. Moreover, these Nb blocks are preceded by an optional known
training block Xt of dimension nt × Nt. Consequently, the block of transmit-
ted pilots and data is of dimension nt × (Nt + NbN) and can be written as (see
Figure 9.1):

X =
[
Xt X1 · · · XNb

]
(9.1.1)

The received data block is of dimension nr × (Nt +NbN) and can be expressed as
follows (cf. (2.1.5)):

Y =
[
Y t Y 1 · · · Y Nb

]
= HX + E (9.1.2)

where

E =
[
Et E1 · · · ENb

]
(9.1.3)

157
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Training Data 2Data 1

Figure 9.1. Transmission of known training data (pilots) and STBC blocks.

is an nr × (Nt+NbN) noise and interference matrix. The presence of the training
block X t is optional; if it is absent we simply let Nt = 0. Clearly, we can expect
that there is a tradeoff between the amount of training used (and hence bandwidth
efficiency) and the BER performance.

We have already discussed the coherent detection of STBC in Chapter 7. In
the present section we extend the results therein to the block transmission model
(9.1.1), and also to the case of colored noise.

9.1.1 White Noise

Assume that X is composed of matrices Xk that are formed via linear STBC using
the same set of code matrices {An,Bn}. Under the assumption that the columns
{en} of E are independent and complex Gaussian with covariance matrix σ2I
the negative part of the log-likelihood function for detection is equal to (dropping
irrelevant constants, and treating H as a deterministic variable):

nr(Nt + NbN) log σ2 +
1
σ2

‖Y − HX‖2 (9.1.4)

If H is known, the detection of X amounts to minimizing the following Euclidean
distance:

‖Y − HX‖2 (9.1.5)

By using the following straightforward extensions of the quantities defined in Sec-
tion 7.1:

F a = INb
⊗ [

vec(HA1) · · · vec(HAns)
]

F b = INb
⊗ [

i vec(HB1) · · · i vec(HBns)
] (9.1.6)

F =
[
vec(HXt) 0 0

0 F a F b

]
(9.1.7)

sn =

⎡

⎢
⎣

s
(n)
1
...

s
(n)
ns

⎤

⎥
⎦, n = 1, . . . , Nb (9.1.8)
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and

s′ =
[
s̄T1 · · · s̄TNb

s̃T1 · · · s̃TNb

]T (9.1.9)

we can write (9.1.5) as:

‖Y − HX‖2 =
∥∥
∥∥y − F

[
1
s′

]∥∥
∥∥

2

(9.1.10)

where y = vec(Y ).
In general (9.1.10) must be minimized under the constraint that the elements

of s′ belong to a finite set S. This is a fairly difficult problem, unless F has a very
special structure (like for OSTBC; cf. Theorem 7.2 (see page 106)).

9.1.2 Spatially Colored Noise

A more general assumption on the noise term E is that the noise is temporally
white but spatially colored, i.e., that the columns of E in (9.1.3) are independent
and Gaussian with the following distribution:

en ∼ NC(0,Λ) (9.1.11)

where Λ is a positive definite matrix. This model may be useful in the presence
of strong spatially colored interference (see Chapter 11). It can be extended to
temporal correlation as well.

In the present case, the ML metric takes on the following form (treating H as
a deterministic quantity):

(Nt + NbN) log |Λ|+Tr
{
Λ−1(Y − HX)(Y − HX)H

}
(9.1.12)

If H and Λ are known, a coherent detection scheme similar to that in Section 9.1.1
is straightforward to obtain. The basic idea is that if the received nr-vectors are
pre-multiplied with Λ−1/2, they will satisfy a pre-whitened data model to which
the coherent detector for white noise can be applied. In effect, for known Λ,
minimization of (9.1.12) reduces to minimization of:

∥
∥Λ−1/2(Y − HX)

∥
∥2 =

∥
∥Λ−1/2Y −Λ−1/2HX

∥
∥2 (9.1.13)

with respect to X ∈ X . By defining

Ga = INb
⊗ [

vec(Λ−1/2HA1) · · · vec(Λ−1/2HAns)
]

Gb = INb
⊗ [

i vec(Λ−1/2HB1) · · · i vec(Λ−1/2HBns)
]

G =
[
vec(Λ−1/2HXt) 0 0

0 Ga Gb

] (9.1.14)
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we find that
∥∥Λ−1/2(Y − HX)

∥∥2 =
∥
∥∥
∥y̌ − G

[
1
s′

]∥∥∥
∥

2

(9.1.15)

where

y̌ = vec(Λ−1/2Y ) (9.1.16)

Minimizing (9.1.15) is a problem of the same form as the minimization of (9.1.10).

Example 9.1: Coherent detection of a single OSTBC matrix in colored noise.
Suppose that Nb = 1 and that there is no training block. Then if {An,Bn} satisfy
(7.4.4), we can prove that

Re
{
GHG

}
= Tr

{
HHΛ−1H

}
I (9.1.17)

and that the ML metric (9.1.15) can be written as
∥∥y̌ − Gs′

∥∥2 = Tr
{
HHΛ−1H

} · ‖s − ŝ‖2 + const. (9.1.18)

where (cf. Theorem 7.3 on page 107)

ŝ �
√

nt

ρ2
· Re

{
GH

a y̌
}
+ iRe

{
GH

b y̌
}

Tr
{
HHΛ−1H

} ∼ NC

(
s,

nt

ρ2Tr
{
HHΛ−1H

} · I
)

(9.1.19)

and where, as before, ρ2 is such that the average transmitted energy during N
time intervals is equal to ρ2E[‖s‖2]. These equations show that ŝ is a sufficient
statistic for detection, which can be interpreted as the output of ns parallel and
independent complex AWGN channels. The SNR on each channel is:

SNR =
ρ2

nt
Tr
{
HHΛ−1H

}
E
[|sn|2

]
(9.1.20)

Obviously, if Λ = σ2I, all the results of this example reduce to those in Theo-
rem 7.3.

9.1.3 The Integer-Constrained Least-Squares Problem

We have seen in the previous sections that the received data associated with a
linear space-time block code can be expressed in terms of the following observation
equation (after appropriate subtraction of known training data)

y = Fs′ + e (9.1.21)
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where F is a known complex matrix of dimension m × n, y is a complex-valued
observation vector of length m and

s′ =
[
s̄
s̃

]
(9.1.22)

is a real-valued vector of length n whose elements belong to a finite alphabet S ′.
Note that (9.1.21) is a generic model that includes both the model in Section 7.1
(in which case m = Nnr and n = 2ns), and that in Sections 9.1.1 and 9.1.2 (in
which case m = NbNnr and n = 2ns, after elimination of the training block).

If e is white and complex Gaussian noise, ML detection amounts to minimizing
the following Euclidean distance:

‖y − Fs′‖2 (9.1.23)

with respect to s′. Note that (9.1.21) can be written:

y′ = F ′s′ + e′ (9.1.24)

where

y′ =
[
ȳ
ỹ

]
, F ′ =

[
F̄

F̃

]
(9.1.25)

Using this notation, minimizing (9.1.23) is equivalent to minimizing:
∥∥y′ − F ′s′

∥∥2 (9.1.26)

The representation in (9.1.26) in general is easier to work with since all involved
quantities are real-valued. Throughout this section, we shall assume that the
constellation S is “separable” into two constellations S ′ for the real and imaginary
parts of the symbols respectively, i.e., that these real and imaginary parts can be
detected independently of each other.

The problem of minimizing (9.1.26) is sometimes called an integer-constrained
least-squares problem and is usually quite difficult to solve, except for the case
when Re

{
FHF

}
is proportional to an identity matrix (which is the case essentially

only if the underlying code is an orthogonal STBC; cf. Theorem 7.2 (see page 106)).
In a naive setting, finding the solution would require a brute-force search through
the |S ′|2ns possible choices of s′, which may well be unfeasible. For instance, if
ns = 4 and the (real) constellation is 8-PAM, a brute-force ML detector would
have to try 88 ≈ 1.7 · 107 combinations. The main goal of this section is to review
a few methods for finding exact and approximate solutions to (9.1.26).
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Zero-Forcing Detection

Perhaps the simplest approach to the minimization of (9.1.26) is to relax the
constraint that s′k ∈ S ′ and simply minimize the criterion with respect to an
unconstrained real-valued vector s′. Doing so, under the weak assumption that F ′

has full column rank, we get:

ŝ′ZF =
(
F ′TF ′)−1F ′Ty′ =

(
F̄

T
F̄ + F̃

T
F̃
)−1(

F̄
T
ȳ + F̃

T
ỹ
)

(9.1.27)

or expressed in the original complex-valued quantities F and y:

ŝ′ZF =
(
Re
{
FHF

})−1Re
{
FHy

}
(9.1.28)

The zero-forcing approximation of the solution to (9.1.26) is then obtained by
picking the points in the constellation S ′ that are closest to [ŝ′ZF]k. We will denote
the constellation point ˆ̂s′k ∈ S ′ closest to ŝ′k by

ˆ̂s′k = P(ŝ′k) (9.1.29)

where P(·) stands for projection onto the constellation.
In general, the zero-forcing approximation does not coincide with the ML so-

lution and hence it is not optimal, except for the case when Re
{
FHF

}
is propor-

tional to an identity matrix. Nevertheless, the zero-forcing approach is simple to
implement and can perform acceptably if the matrix F ′ is well-conditioned.

Minimum Mean-Square Error Detection

Consider again the observation model (9.1.24):

y′ = F ′s′ + e′ (9.1.30)

If we assume that s′ is random with the following distribution:

s′ ∼ N
(
0,

ρ2

2
I
)

(9.1.31)

(we assume a variance of ρ2/2 because s′ is real-valued) then we can compute an
estimate of s′ that is linear in y as follows:

ŝ′ = G′y′ (9.1.32)

and obtain the matrix G′ that minimizes the following mean-square error:

E
[‖ŝ′ − s′‖2] (9.1.33)
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This estimate, which is called the MMSE estimate of s′, is then projected onto the
constellation S ′ as in (9.1.29) to obtain the MMSE approximation of the solution
to (9.1.26).

The vector ŝ′ that minimizes the MSE in (9.1.33) can be obtained as follows.
Assuming that s′ and e′ are independent, the MSE of ŝ′ in (9.1.33) can be written:

E
[∥
∥ŝ′ − s′

∥
∥2
]
= E

[∥
∥G′y′ − s′

∥
∥2
]

= E
[∥
∥G′F ′s′ + G′e′ − s′

∥
∥2
]

=
ρ2

2
· ∥∥G′F ′ − I

∥∥2 +
σ2

2
· ‖G′‖2

=
ρ2

2
· ∥∥[I 0

]− G′ [F ′ √
σ2/ρ2I

]∥∥2

(9.1.34)

It follows that the matrix G′ that minimizes the MSE in (9.1.34) is equal to:

G′ = F ′T
(

F ′F ′T +
σ2

ρ2
I

)−1
(9.1.35)

Therefore, the resulting MMSE estimate of s′ is:

ŝ′MMSE = F ′T
(

F ′F ′T +
σ2

ρ2
I

)−1
y′ (9.1.36)

The MMSE technique can provide somewhat better estimates of s′ than the
zero-forcing algorithm, at a similar computational cost. However, the evaluation
of the MMSE solution requires knowledge of the ratio σ2/ρ2.

The Iterative Nulling and Cancelling Algorithm

Iterative nulling and cancelling is a suboptimal algorithm that detects the elements
of s′ in a sequential fashion that is somewhat reminiscent of iterative interference
cancellation schemes for multiuser detection [Verdú, 1998]. It has been an algo-
rithm used in Bell-Labs experimental high-rate system “BLAST” [Foschini, Jr.,
1996]. It has been shown that nulling and cancelling is closely related to a form of
decision-feedback equalization [Ginis and Cioffi, 2001]. Many variants of this
algorithm exist in the literature. We shall describe one of the simplest variants in
what follows.

The main idea behind the algorithm is quite easy to understand. Consider (see
(9.1.36)):

ŝ′MMSE = F ′T
(

F ′F ′T +
σ2

ρ2
I

)−1
y′ (9.1.37)
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which is the MMSE solution of the problem (9.1.26). The covariance matrix asso-
ciated with ŝ′MMSE is:

Q = E
[(

ŝ′MMSE − E
[
ŝ′MMSE

])(
ŝ′MMSE − E

[
ŝ′MMSE

]
)T
]

=
σ2

2
· F ′T

(
F ′F ′T +

σ2

ρ2
I

)−2
F ′ (9.1.38)

(Alternatively, we could use the MSE matrix:

E
[(

ŝ′MMSE − s′
)(

ŝ′MMSE − s′)T
]

(9.1.39)

the computation of which we leave as an exercise to the reader.) If {Qk,k} denote
the diagonal elements of Q, we would expect that the element ŝ′k of ŝ′MMSE for
which Qk,k is minimal is the most accurate one. Let

p = argmin
k

{Qk,k} (9.1.40)

and let us compute

ˆ̂s′p = P(ŝ′p) (9.1.41)

If we assume that ˆ̂s′p is correct, we can subtract its contribution from y′ and obtain
a problem of reduced order:

min
s′

p

∥∥
∥
(
y′ − ˆ̂s′pf

′
p

)
− F ′

ps
′
p

∥∥
∥
2

(9.1.42)

where f ′
p is the pth column of F ′, s′p denotes the vector s′ with the pth element

removed and F ′
p is the matrix F ′ with the pth column eliminated. The procedure

continues iteratively by solving the reduced problem (9.1.42) until all elements of
s′ have been found.

The Sphere Decoding Algorithm

The task of finding the vector s′ that minimizes (9.1.26) is related to that of finding
the shortest vector in a finite lattice, which is a well-studied problem in number
theory and computational mathematics. The work of [Fincke and Pohst, 1985]
made a significant progress towards reducing the complexity of finding the solu-
tion to this minimization problem. The method proposed in the cited paper is
usually referred to as “sphere decoding” and was applied in the context of digital
and wireless communications in, for instance, [Viterbo and Boutros, 1999],
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[Damen et al., 2000]. A complexity analysis of it, in the context of wireless
communications, can be found in [Hassibi and Vikalo, 2002]. Analyzing and
reducing the computational complexity of the sphere decoding algorithm and re-
lated methods is currently an active research topic (see the cited papers and also,
e.g., [Agrell et al., 2002]); we shall only describe the technique in its simplest
version. Like in the previous subsections, we assume that the real and imaginary
parts of the symbols can be detected independently of each other.

We say that a vector s′ (whose elements belong to S ′) lies in a sphere with
radius r if it approximates the solution to (9.1.26) with a residual norm less than
r:

∥
∥y′ − F ′s′

∥
∥2 < r2 (9.1.43)

Let

ŝ′ZF =
(
F ′TF ′)−1F ′Ty′ (9.1.44)

be the zero-forcing solution (see (9.1.28)). Since

ŝ′TZFF ′TF ′s′ = y′TF ′(F ′TF ′)−1F ′TF ′s′ = y′TF ′s′ (9.1.45)

it follows that
∥
∥F ′(s′ − ŝ′ZF)

∥
∥2 =

∥
∥F ′s′

∥
∥2 +

∥
∥F ′ŝ′ZF

∥
∥2 − 2 · ŝ′TZFF ′TF ′s′

=
∥
∥F ′s′

∥
∥2 +

∥
∥F ′ŝ′ZF

∥
∥2 − 2 · y′TF ′s′

=
∥
∥y′ − F ′s′

∥
∥2 − ‖y′‖2 + ∥

∥F ′ŝ′ZF

∥
∥2

(9.1.46)

and consequently
∥
∥y′ − F ′s′

∥
∥2 =

∥
∥F ′(s′ − ŝ′ZF)

∥
∥2 + ‖y′‖2 − ∥

∥F ′ŝ′ZF

∥
∥2

=
∥
∥R(s′ − ŝ′ZF)

∥
∥2 + ‖y′‖2 − ∥

∥Rŝ′ZF

∥
∥2

(9.1.47)

where R is the upper triangular matrix with positive diagonal elements that sat-
isfies

RTR = F ′TF ′ (9.1.48)

In practice, R is obtained via the Cholesky factorization of the positive definite
matrix F ′TF ′ (see, e.g., [Golub and van Loan, 1989]). It follows that a vector
s′ lies in a sphere with radius r if and only if

∥∥R(s′ − ŝ′ZF)
∥∥2 < r2 − ‖y′‖2 + ∥∥Rŝ′ZF

∥∥2 (9.1.49)
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The main idea behind the sphere decoding algorithm is perhaps most easily
described in the following way. Let

r′2n = r2 − ∥
∥y′∥∥2 +

∥
∥Rŝ′ZF

∥
∥2 (9.1.50)

where n is the length of s′. Since R is an upper-triangular matrix:
∥∥R(s′ − ŝ′ZF)

∥∥2

=
n∑

k=1

R2k,k

(

s′k − ŝ′k +
n∑

l=k+1

Rk,l

Rk,k
(s′l − ŝ′l)

)2

=R2n,n(s
′
n − ŝ′n)

2 + R2n−1,n−1

(
s′n−1 − ŝ′n−1 +

Rn−1,n
Rn−1,n−1

(s′n − ŝ′n)
)2

+ · · ·

(9.1.51)

(here s′k is the kth element of s′). From (9.1.51) it follows that a necessary condition
for s′ to lie in a sphere with radius r is that

R2n,n(s
′
n − ŝ′n)

2 ≤ r′2n (9.1.52)

or equivalently that
⌈
ŝ′n − r′n

Rn,n

⌉
≤ s′n ≤

⌊
ŝ′n +

r′n
Rn,n

⌋
(9.1.53)

where �x� and 	x
 denote the integers obtained by rounding x towards +∞ and
−∞, respectively. Note that (9.1.53) is a necessary but not a sufficient condition.

For a given s′n ∈ S ′ that satisfies (9.1.53), let us define

r′2n−1 = r′2n − R2n,n(s
′
n − ŝ′n)

2

ŝ′n−1|n = ŝ′n−1 −
Rn−1,n

Rn−1,n−1
(s′n − ŝ′n)

(9.1.54)

Then a further necessary condition for s′ to lie in the sphere is (cf. (9.1.51)):

⌈
ŝ′n−1|n − r′n−1

Rn−1,n−1

⌉
≤ s′n−1 ≤

⌊
ŝ′n−1|n +

r′n−1
Rn−1,n−1

⌋
(9.1.55)

For given s′n ∈ S ′ and s′n−1 ∈ S ′ in the intervals specified by (9.1.55) we can
continue to obtain a bound on s′n−2 that must be satisfied for s′ to lie in the sphere
of radius r:

⌈
ŝ′n−2|n−1 −

r′n−2
Rn−2,n−2

⌉
≤ s′n−2 ≤

⌊
ŝ′n−2|n−1 +

r′n−2
Rn−2,n−2

⌋
(9.1.56)
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where

r′2n−2 = r′2n−1 − R2n−1,n−1(s
′
n−1 − ŝ′n−1|n)

2

ŝ′n−2|n−1 = ŝ′n−2 −
Rn−2,n−1
Rn−2,n−2

(s′n−1 − ŝ′n−1|n)
(9.1.57)

The sphere decoder continues recursively to establish bounds on s′n−3, . . .. When-
ever a valid value of ŝ′1 is reached, the necessary and sufficient conditions on s′ to
lie in the sphere are satisfied and hence we found a vector in the sphere; otherwise,
we are on a “wrong track,” and we should try another combination. Each time a
vector s′∗ that lies in the sphere is found, the search can be restarted by restrict-
ing it to a sphere with radius ‖y′ − F ′s′∗‖2. The initial r′2n can be obtained, for
example, by “truncating” ŝ′ZF as in (9.1.29).

Note that although the procedure is recursive in nature, an iterative imple-
mentation may be advantageous from a computer implementation point of view.

9.2 Concatenation of Linear STBC with Outer Codes

In a practical system, the linear space-time block codes will be concatenated with
outer error-correcting codes. In this case, in addition to solving a problem such as
(9.1.26), the detector must also provide reliability information about the decisions.
Note that for orthogonal STBC, the computation of optimal soft information is
trivial, owing to the inherent orthogonality of OSTBC that effectively decouples
the MIMO channel into a number of scalar channels (see Section 7.4). However,
for general STBC, it is often necessary to resort to suboptimal techniques.

9.2.1 Optimal Information Transfer

In the general case, the optimal soft information (in a maximum-likelihood sense)
is contained in the set of log-likelihood function values

{
− nr(Nt + NbN) log σ2 − 1

σ2
‖Y − HX‖2

}
(9.2.1)

for all possible X, or equivalently, in the following set:
{
− nr(Nt + NbN) log σ2 − 1

σ2
‖y − Fs′‖2

}
(9.2.2)

for all possible s′. This is so since given these likelihood function values, the total
likelihood function can be computed for any given hypothetical message [Larsson
et al., 2002b]. Of course, computing all these metrics explicitly and passing their
values to a channel decoder would violate any reasonable complexity bounds.
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If the channel H and noise variance σ2 are unknown, it was shown in [Larsson
et al., 2002b] that the optimal (from an ML point of view) soft information is
the set of likelihood functions concentrated with respect to H , σ2:

{

min
H,σ2

{
− nr(Nt + NbN) log σ2 − 1

σ2
‖Y − HX‖2

}
}

(9.2.3)

for all possible X. The cited paper discussed various problems related to the
computation of optimal information according to (9.2.3). For instance, since the
channel H is unknown it can be assumed to be either a deterministic unknown
or a stochastic variable (in the latter case, the likelihood function takes on a
form different from (9.2.1); see the cited article). In fact, since H is sometimes
well modeled as a random matrix with independent Gaussian elements having the
same variance (see Chapter 2), one could expect that incorporation of such a priori
information on the statistical distribution of H would increase the performance.
In the cited reference, however, it was found that a deterministic viewpoint may
have some advantages, despite the fact that the modeling of H as a deterministic
quantity (as we do throughout this book) might discard some a priori information
on the distribution of H .

9.2.2 Bit Metric Computations

In general, it is not computationally feasible to use the optimal soft information
transfer discussed in the previous Section 9.2.1 and one must resort to various
approximations. In practice, it is often desirable to compute a likelihood value
for each information bit instead of a likelihood value for each code matrix. Such
bit metrics are particularly important if the code is used in concatenation with
bit-interleaved coded modulation [Caire et al., 1998].

Let c be a particular information bit under study. Provided that sufficient in-
terleaving is used, the optimal information to be forwarded to the channel decoder
for each bit c is the likelihood ratio P (c = 1)/P (c = 0) [Lin and Costello,
1983]. Let {s′ : c = 0}, {s′ : c = 1} denote the set of vectors s′ for which c = 0
respectively c = 1. If the information bits are equally likely and independent a
priori, the likelihood ratio P (c = 1)/P (c = 0) can be approximated by:

P (c = 1)
P (c = 0)

=

∑
s′:c=1 exp

(
− 1

σ2 ‖y − Fs′‖2
)

∑
s′:c=0 exp

(
− 1

σ2 ‖y − Fs′‖2
) (9.2.4)

In practice, (9.2.4) can be evaluated by recursively using the fact that

log
(
ex + ey

)
= max(x, y) + log

(
1 + e−|x−y|) (9.2.5)
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The function log(1 + e−x) can be stored in a lookup-table, hence eliminating the
need for computing exponential or logarithmic functions. If desired, the numerical
calculations involved can be further simplified by using the approximation

log
(
ex + ey

) ≈ max(x, y) (9.2.6)

Direct evaluation of (9.2.4) is impractical since computing the entire summation
over all possible s′ would take as long a time as solving the ML decoding problem
(9.1.26) in a brute-force manner. This problem can be overcome, for instance, by
summing only over the vectors s′ that lie inside a sphere of a certain radius. The
sphere decoder (see Section 9.1.3) can be used to determine those vectors s′. It
is also possible to solve the integer-constrained LS problem and decode the outer
error-correcting code jointly in a way reminiscent of turbo coding [Hochwald
and ten Brink, 2001].

9.3 Joint ML Detection and Estimation

If the channel H is known to the receiver, the coherent detectors in Section 9.1
can be applied directly. In this section, we treat ML detection for the case that
the channel is unknown to the receiver. Referring to the discussion in Section 9.2,
we will assume that H and σ2 are deterministic unknowns. Then the columns
of Y are Gaussian random variables with a mean and covariance that depend on
the transmitted data and hence it is, in principle, straightforward to formulate the
joint likelihood function for the data X , the channel H and the noise variance
σ2. The resulting joint detection (of X) and estimation (of H) can be seen as an
application of the generalized likelihood ratio test (GRLT) principle [Kay, 1998,
Sec. 6.4.2]. Another possibility is to treat H as a random variable (cf. the remark
after Theorem 4.4 on page 49).

9.3.1 White Noise

Consider the logarithm of the likelihood function associated with a certain block
X:

−nr(Nt + NbN) log σ2 − 1
σ2

‖Y − HX‖2 (9.3.1)

Maximizing (9.3.1) with respect to H is a quadratic optimization problem. It is
easy to see that the solution is given by (see, e.g., [Stoica and Moses, 1997,
Sec. A.8.2] or [Söderström and Stoica, 1989, Sec. A.2])

H = Y XH(XXH)−1 (9.3.2)
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(assuming that the above inverse exists). Insertion of (9.3.2) in (9.3.1) and drop-
ping constant terms show that maximization of (9.3.1) is equivalent to the maxi-
mization of the following function:

Tr
{
Y ΠXH Y H

}
(9.3.3)

with respect to the symbols in X. The corresponding ML estimate of σ2 can easily
be found to be

σ̂2 =
1

nr(Nt + NbN)
Tr
{
Y Π⊥

XHY H
}

(9.3.4)

The exact ML detection amounts to maximizing (9.3.3) jointly with respect
to all symbols contained in X. Apparently, doing so requires a search over all
possible X, which is clearly unfeasible if ns and Nb are large; in particular, this
would involve the evaluation of (9.3.3) for all |S|Nbns possible combinations of
symbols.

For the reason discussed in the previous paragraph, a suboptimal detection
technique may be desirable. In the following sections, we will describe a few
such suboptimal techniques. Section 9.4 describes a training-based scheme that
makes use of a transmitted block of pilots. In Section 9.5 we go on to develop
a technique that maximizes the likelihood function in an iterative fashion; this
iterative procedure can be initialized in a blind manner, without using any training
data, or by using a channel estimate obtained via training. However, before doing
so we will discuss the joint ML detection and estimation problem in more detail.

Example 9.2: Joint detection/estimation for OSTBC with unitary symbols.
If X is formed using orthogonal STBC with a unitary symbol constellation S,
and if the training block Xt is semi-unitary, the problem of maximizing (9.3.3)
can be cast in the form (9.1.26), and consequently the techniques in Section 9.1.3
can be used to find the ML solution. Note, however, that the main virtue of
orthogonal STBC is the decoupled detection of the information symbols in the case
of a known propagation channel. If the receiver can afford to use the techniques
of Section 9.1.3, OSTBC may not be the preferred space-time code. Hence the
following derivation may be somewhat less important from a practical point of
view, although it is quite instructive.

Supposing that

XtX
H
t = ρ2I (9.3.5)

and under the assumptions made above we have that (see Theorem 7.1 on
page 102):

XXH =
(
ρ2 + Nbns

) · I (9.3.6)
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and consequently

ΠXH =
1

ρ2 + Nbns
· XHX (9.3.7)

Hence the maximization of (9.3.3) is equivalent to the maximization of

Tr
{
Y XHXY H

}
=
∥
∥vec (Y XH)

∥
∥2 (9.3.8)

The maximizer of (9.3.8) is the same as the maximizer of

[1 s′T ]FHF

[
1
s′

]
(9.3.9)

with respect to {s′n}, s′n ∈ S ′, where F is defined according to:

F =
[
vec(XtY

H) F
(a)
1 · · · F

(a)
Nb

F
(b)
1 · · · F

(b)
Nb

]

F
(a)
k =

[
vec(Y kA

H
1 ) · · · vec(Y kA

H
ns
)
]
, k = 1, . . . , Nb

F
(b)
k =

[−i vec(Y kB
H
1 ) · · · −i vec(Y kB

H
ns
)
]
, k = 1, . . . , Nb

(9.3.10)

This maximization problem is exactly the one studied in Section 9.1.3.

9.3.2 Colored Noise

Assume that the noise is temporally white but spatially colored, i.e., that the
columns of E in (9.1.3) are independent and Gaussian according to

en ∼ NC(0,Λ) (9.3.11)

where Λ is an unknown positive definite matrix. In this case, the ML metric takes
on the following form (treating H as a deterministic quantity):

(Nt + NbN) log |Λ|+Tr
{
Λ−1(Y − HX)(Y − HX)H

}
(9.3.12)

It is possible to concentrate the ML metric (9.3.12) analytically with respect
to H and Λ for a given X. It is instructive to see how this can be done. Let

Λ = T∆TH (9.3.13)

be the eigenvalue-decomposition of Λ, where

TTH = I (9.3.14)
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and

∆ =

⎡

⎢
⎢⎢
⎢
⎣

δ1 0 · · · 0

0 δ2
. . .

...
...

. . . . . . 0
0 · · · 0 δnr

⎤

⎥
⎥⎥
⎥
⎦

(9.3.15)

Then we have that

(Nt + NbN) log |Λ|+Tr
{
Λ−1(Y − HX)(Y − HX)H

}

=(Nt + NbN)
nr∑

n=1

log δn +
nr∑

n=1

1
δn

(
TH(Y − HX)(Y − HX)HT

)
n,n

≥(Nt + NbN)
nr∑

n=1

log
(
TH(Y − HX)(Y − HX)HT

)
n,n

+ const.

=(Nt + NbN) log
nr∏

n=1

(
TH(Y − HX)(Y − HX)HT

)
n,n

+ const.

≥(Nt + NbN) log |TH(Y − HX)(Y − HX)HT |+ const.

(9.3.16)

The first inequality, which is easily verified, becomes an equality if

δn =
1

Nt + NbN

(
TH(Y − HX)(Y − HX)HT

)
n,n

(9.3.17)

The second inequality follows from the Hadamard inequality [Horn and John-
son, 1985, Th. 7.8.1] and it becomes an equality if the matrix

TH(Y − HX)(Y − HX)HT (9.3.18)

is diagonal, which, in view of (9.3.17), gives

TH(Y − HX)(Y − HX)HT = (Nt + NbN)∆ (9.3.19)

Hence, the ML estimate of the noise covariance matrix is given by (conditioned on
H):

Λ̂ = T∆TH =
1

Nt + NbN
(Y − HX)(Y − HX)H (9.3.20)

Inserting (9.3.20) in (9.3.12), we are left with minimizing:

log |(Y − HX)(Y − HX)H | (9.3.21)
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Observe that

(Y − HX)(Y − HX)H

= Y Y H − HXY H − Y XHHH + HXXHHH

= (H − Y XH(XXH)−1)XXH(H − Y XH(XXH)−1)H

+ Y Y H − Y XH(XXH)−1XY H

≥ Y Y H − Y XH(XXH)−1XY H = Y Π⊥
XH Y H

(9.3.22)

where the inequality becomes an equality if and only if

Ĥ = Y XH(XXH)−1 (9.3.23)

Hence Ĥ in (9.3.23) minimizes all eigenvalues of (Y − HX)(Y − HX)H and
therefore also the determinant in (9.3.21). Consequently Ĥ is the ML estimate
of the channel also in this case of colored noise (see the channel estimate in the
case of white noise in (9.3.2)). Note that the ML estimate of Λ can be found by
inserting (9.3.23) into (9.3.20) which gives

Λ̂ =
1

Nt + NbN
Y Π⊥

XH Y H (9.3.24)

This formula may be of interest per se.
Insertion of (9.3.23) in (9.3.21) gives the following concentrated ML metric:

∣
∣∣Y Π⊥

XH Y H
∣
∣∣ (9.3.25)

Like for the case of white noise (see (9.3.3)), minimization of (9.3.25) with respect
to X requires a search through the |S|Nbns possible combinations of symbols, which
is often unfeasible. In the next sections, we derive suboptimal receiver structures
for noncoherent detection (both for white and colored noise).

9.4 Training-Based Detection

Perhaps the most intuitive and easiest way to detect the data symbols in the
case of an unknown channel is to use the received training block Y t to estimate
H and then use this channel estimate in the coherent detector (see Section 9.1).
This procedure is a standard approximation to the exact ML detector and the
so-obtained (suboptimal) detector will be referred to as training-based.
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The ML estimate of the channel gain matrix H based on the received training
block Y t is, regardless of whether the receiver assumes that Λ = σ2I, or that Λ
is an unknown positive definite matrix:

Ĥ = Y tX
H
t (X tX

H
t )

−1 (9.4.1)

For colored noise, the noise covariance estimate is given by:

Λ̂ =
1
Nt

Y tΠ⊥
XH

t
Y H

t (9.4.2)

For white noise, the noise variance estimate is:

σ̂2 =
1

Ntnr
Tr
{

Y tΠ⊥
XH

t
Y H

t

}
(9.4.3)

Hence, to summarize the training-based ML algorithm:

Step 1. Obtain estimates of H and of the noise parameters based on the training
block Y t using (9.4.1)–(9.4.3).

Step 2. Use the so-obtained estimates in the coherent detector (see Section 9.1)
to detect the data symbols.

9.4.1 Optimal Training for White Noise

In this subsection we address the question of choosing the training block Xt so as
to optimize the system performance. Finding the Xt that minimizes the BER of
the system is a hard problem, but we can easily address the question of finding the
Xt that minimizes the variance of the training-based channel estimate, and which
should also minimize the performance difference between coherent and training-
based detection.

The ML estimate of the channel H based on the received training block Y t is
given by (see (9.4.1)):

Ĥ = Y tX
H
t (X tX

H
t )

−1 (9.4.4)

Since
Y t = HXt + Et (9.4.5)

we have that
E[Ĥ ] = HXtX

H
t (X tX

H
t )

−1 = H (9.4.6)
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so the channel estimate in (9.4.4) is unbiased. To derive its covariance matrix, let

h = vec(H)

ĥ = vec(Ĥ)
et = vec(Et)

(9.4.7)

Since
E[ete

H
t ] = σ2I (9.4.8)

it follows that

Σ � E[(ĥ − h)(ĥ − h)H ]

=
(
XH

t (X tX
H
t )

−1 ⊗ I
)T

E[ete
H
t ]
(
XH

t (XtX
H
t )

−1 ⊗ I
)∗

= σ2
((

(XtX
H
t )

−T (XtX
H
t )

T (XtX
H
t )

−T
)⊗ I

)

= σ2
(
(X tX

H
t )

−T ⊗ I
)

(9.4.9)

and hence that

Tr {Σ} = nrTr
{
(XtX

H
t )

−1}σ2

|Σ| = |(X tX
H
t )

−1|nrσ2nrnt
(9.4.10)

The covariance matrix Σ coincides with the Cramér-Rao bound [Söderström
and Stoica, 1989, Sec. B.4] [Kay, 1993, Chap. 3], so the channel estimate in
(9.4.4) is statistically efficient.

We can design the training block Xt by minimizing Tr {Σ}, or the correspond-
ing determinant |Σ|, in (9.4.10) under a power constraint

Tr
{
X tX

H
t

} ≤ nt (9.4.11)

Minimizing the trace of the error covariance has a natural physical interpretation
as the trace corresponds to the sum of the variances of the error components; on
the other hand, the determinant can be interpreted as the volume of a hyper-
ellipsoid within which the error vector lies with a certain probability. To carry out
the minimization of the error metrics, we need the following theorem.
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Theorem 9.1: A result on optimal training.
Assume that X has nt linearly independent rows and that

Tr
{
XXH

} ≤ nt (9.4.12)

Then

(i) Tr
{
(XXH)−1

} ≥ nt with equality if and only if XXH = I

(ii)
∣
∣(XXH)−1

∣
∣ ≥ 1 with equality if and only if XXH = I

Proof: To show part (i), note that by the Cauchy-Schwarz inequality:

Tr
{
XXH

} · Tr{(XXH
)−1}

≥
(
Tr
{(

XXH
)1/2 · (XXH

)−1/2})2

=
(
Tr
{
Int

})2 = n2t

(9.4.13)

It follows that

Tr
{(

XXH
)−1} ≥ n2t

Tr
{
XXH

} ≥ n2t
nt

= nt (9.4.14)

with equality if and only if XXH = I.
To prove part (ii), let λ1, . . . , λnt be the eigenvalues of XXH . By the

arithmetic-geometric mean inequality,

∣∣(XXH)−1
∣∣ =

( nt∏

m=1

λm

)−1 ≥
( 1

nt

nt∑

m=1

λm

)−nt

=
( 1

nt
Tr
{
XXH

})−nt ≥ 1

(9.4.15)

with equality if and only if λ1 = · · · = λnt = 1. Consequently, the semi-unitary
choice of X also minimizes the determinant of (XXH)−1.

Application of Theorem 9.1 shows that the optimal Xt must be semi-unitary:

XtX
H
t ∝ I (9.4.16)

A related optimality result was derived in [Hassibi and Hochwald, 2000], by
considering an information theoretic criterion instead of the covariance of the chan-
nel estimate. The result (9.4.16) has the consequence that an arbitrary OSTBC
matrix Xt, or a concatenation of several such matrices, can be used for optimal
training. The optimal training does not depend on either the true channel H or
the noise variance σ2, and this is a pleasing property.
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9.4.2 Optimal Training for Colored Noise

In the case of colored noise, we should consider the accuracy of H as well as that
of Λ when designing the optimal training block Xt. Fortunately, the estimation
accuracy of Λ does not depend on Xt. This result is known in the linear regression
literature [Anderson, 1971], but was also established in the present context in
[Larsson et al., 2003]. Our derivation follows that in the latter reference.

Consider the projection matrix Π⊥
XH

t
. Since Π⊥

XH
t
has rank Nt−nt, there is an

Nt × (Nt − nt) matrix U such that

Π⊥
XH

t
= UUH (9.4.17)

and
UHU = I (9.4.18)

Let
Z � UHEH

t (9.4.19)

Then
vec(Z) = (I ⊗ UH) vec(EH

t ) (9.4.20)

and consequently

E[vec(Z)] = 0

E
[
vec(Z)

(
vec(Z)

)H] = (I ⊗ UH)E[vec(EH
t )
(
vec(EH

t )
)H ](I ⊗ U)

= (I ⊗ UH)(Λ⊗ I)(I ⊗ U)
= (Λ⊗ I)

(9.4.21)

Hence vec(Z) is a zero-mean complex Gaussian vector with a covariance matrix
that depends only on Λ (but not on Xt). It follows that the statistical distribution
of

Λ̂ =
1
Nt

Y tΠ⊥
XH

t
Y H

t =
1
Nt

EtΠ⊥
XH

t
EH

t =
1
Nt

EtUUHEH
t =

1
Nt

ZHZ (9.4.22)

depends only on Λ (but not on X t nor on H).
The LS channel estimate is given by (9.4.1):

Ĥ = Y tX
H
t (X tX

H
t )

−1 (9.4.23)
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Its expectation and covariance are easily derived (cf. Section 9.4.1)

E[Ĥ ] = HXtX
H
t (X tX

H
t )

−1 = H

Σ � E[(ĥ − h)(ĥ − h)H ]

= (XH
t (X tX

H
t )

−1 ⊗ I)TE[ete
H
t ](X

H
t (XtX

H
t )

−1 ⊗ I)∗

=
(
(X tX

H
t )

−T (XtX
H
t )

T (XtX
H
t )

−T
)⊗Λ

= (X tX
H
t )

−T ⊗Λ

(9.4.24)

It follows that

Tr {Σ} = Tr
{
(X tX

H
t )

−1}Tr {Λ}
|Σ| = |(XtX

H
t )

−1|nr |Λ|nt
(9.4.25)

In the same way as in Section 9.4.1, we can use Theorem 9.1 (see page 176) to
minimize Tr {Σ} or |Σ| in (9.4.25) under the power constraint

Tr
{
X tX

H
t

} ≤ nt (9.4.26)

The result is the same as for white noise (Λ = σ2I): the optimal training block
Xt should satisfy

XtX
H
t ∝ I (9.4.27)

This is an appealing result: a semi-unitary training block is optimal regardless
of the channel and the noise covariance, and regardless of whether the receiver
assumes white or colored noise.

9.4.3 Training for Frequency-Selective Channels

Estimates of the parameters associated with a frequency-selective channel can be
acquired by training in a manner similar to what we described for flat fading
channels above. In principle, a distinction can be made between the case when
the time-domain impulse response H(z−1) is of interest, and the case when an
estimate of the transfer function H(ω) is desired. The former case is relevant for
time-domain equalization (such as for TR-OSTBC in Section 8.3), whereas the
latter case is relevant for systems that process the received data in the frequency-
domain (such as OFDM and ST-OFDM in Sections 5.2.2 and 8.2).

Training for Time-Domain Equalized Systems: Estimation of H(z−1)

Let xt(n), n = 0, . . . , Nt − 1 be a set of consecutively transmitted training vectors
of length nt, and let yt(n) be the corresponding received data. For reasons similar
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to those discussed in Chapter 2, the received data is well-defined only for n =
L, . . . ,Nt − 1 where L is the maximum excess delay of the channel. Arranging the
data in the same way as in Section 2.2.2 we obtain:

yt =
[
yT (L) · · · yT (Nt − 1)

]T =
(
XT

t ⊗ Inr

)
h + et (9.4.28)

where

et =
[
eT (L) · · · eT (Nt − 1)

]T (9.4.29)

is a noise vector,

h = vec
([

H0 · · · HL

])
(9.4.30)

and the matrix X t is built from the training data {xt(n)}Nt−1
n=0 according to

(cf. (2.2.11)):

Xt =

⎡

⎢
⎢⎢
⎢
⎣

xt(L) · · · · · · · · · xt(Nt − 1)

xt(L − 1)
. . . xt(Nt − 2)

...
. . .

...
xt(0) · · · · · · xt(L) · · · xt(Nt − L − 1)

⎤

⎥
⎥⎥
⎥
⎦

(9.4.31)

Then ML estimation of the channel h from the received training data yt is
equivalent to minimizing the following metric (see (8.1.4)):

‖yt − (XT
t ⊗ Inr)h‖2 (9.4.32)

The minimizer of (9.4.32) is given by:

ĥ =
(
(X∗

tX
T
t )

−1X∗
t ⊗ Inr

)
yt (9.4.33)

It is not hard to prove that, assuming that E[ete
H
t ] = σ2I,

E[ĥ] = h

E[(ĥ − h)(ĥ − h)H ] = σ2
(
(X∗

tX
T
t )

−1 ⊗ Inr

) (9.4.34)

Consequently, the channel estimate is unbiased with a covariance matrix that
depends on the training data. The covariance matrix of ĥ is minimized when
(cf. Theorem 9.1 on page 176):

XtX
H
t ∝ I (9.4.35)

This happens at least approximately when the sequences of training data trans-
mitted via the different antennas are mutually uncorrelated white signals. Since
Xt has a block-Toeplitz structure, it may not be possible to achieve (9.4.35) ex-
actly, but at least the above result provides some guidelines for the design of a
quasi-optimal training block.
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Training for Frequency-Domain Equalized Systems: Estimation of H(ω)

For a system that uses frequency-domain equalization (with OFDM as an exam-
ple), it may be desirable to obtain an estimate of the channel transfer function
H(ω) rather than the impulse response H(z−1). This can be done in two ways: via
estimation in the frequency domain, or via estimation in the time-domain followed
by transformation to the frequency domain. As we will see, the latter technique is
often more advantageous.

Frequency-Domain Estimation: Let N0 be the number of subcarriers available
for training and let

X t(n) =
[
x
(1)
t (n) · · ·x(N)t (n)

]
, n = 0, . . . , N0 − 1 (9.4.36)

be an nt ×N matrix that contains the training data associated with subcarrier n.
If Y t(n) is a matrix of dimension nr×N that contains the corresponding received
data, then the ML metric for estimation of the channel transfer function associated
with subcarrier n is given by (cf. Theorem 8.1 (see page 134)):

∥
∥
∥∥Y t(n)− H

( 2π
N0

n
)
Xt(n)

∥
∥
∥∥

2

(9.4.37)

Minimization of (9.4.37) yields

Ĥ
( 2π

N0
n
)
= Y t(n)XH

t (n)(Xt(n)XH
t (n))

−1 (9.4.38)

Equation (9.4.38) is of the same form as (9.4.4). Therefore, we conclude that an
optimal training block should satisfy:

Xt(n)XH
t (n) ∝ I (9.4.39)

Note that it may be the case that not all available subcarriers are being used for
transmission (see, e.g., [van Nee et al., 1999]). In that case, it is not necessary
to estimate the channel gain corresponding to a subcarrier that is not in use. This
is easy to accomplish in the present case simply by not transmitting any pilots on
these subcarriers.

Time-Domain Estimation: The procedure for estimating H(ω) outlined in the
above paragraph is not optimal in general. This is so since the physical propa-
gation channel H(z−1) (in the time-domain) is determined by only ntnr(L + 1)
parameters, while the method outlined above estimates ntnrN0 parameters and
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typically N0 � L + 1. According to the parsimony principle [Söderström and
Stoica, 1989, Sec. 11.4], it should therefore be more advantageous to estimate
the time-domain propagation coefficients and thereafter transform them to the
frequency domain, instead of estimating the frequency domain propagation coef-
ficients directly. This observation has been exploited frequently in the literature
(see, e.g., [Li et al., 1999]).

The time-domain and the frequency-domain propagation coefficients are related
in the following way:

H
( 2π

N0
k
)
=

1√
N0

L∑

l=0

H l exp
(
− i

2π
N0

kl
)

(9.4.40)

Let

hf = vec

(
[
H(0) · · · H

(
2π
N0

(N0 − 1)
)]
)

ht = vec
([

H0 · · · HL

])
(9.4.41)

and let T be the N0 × L matrix whose (k, l)th element is given by

T k,l =
1√
N0

exp
(
−i2π

(k − 1)(l − 1)
N0

)
(9.4.42)

(note that in general THT = I but TTH �= I). Then (9.4.40) can be written

hf = (T ⊗ Inrnt)ht (9.4.43)

Let

yt = vec
([

Y t(0) · · · Y t(N0 − 1)
])

(9.4.44)

The ML metric for channel estimation becomes (cf. Theorem 8.1 on page 134):

N0−1∑

n=0

∥
∥
∥∥Y t(n)− H

( 2π
N0

n
)
X t(n)

∥
∥
∥∥

2

=‖yt − (X t ⊗ Inr)hf‖2
=‖yt − (X t ⊗ Inr)(T ⊗ Inrnt)ht‖2

(9.4.45)
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where

Xt =

⎡

⎢
⎢⎢
⎢
⎣

XT
t (0) 0 · · · 0

0 XT
t (1)

. . .
...

...
. . . . . . 0

0 · · · 0 XT
t (N0 − 1)

⎤

⎥
⎥⎥
⎥
⎦

(9.4.46)

Estimation of ht by minimizing (9.4.45) yields

ĥt =
[(

TH ⊗ Inrnt

)(
XH

t ⊗ Inr

)(
Xt ⊗ Inr

)(
T ⊗ Inrnt

)]−1

· (TH ⊗ Inrnt

)(
XH

t ⊗ Inr

)
yt

=
[(((

TH ⊗ Int

)
XH

t Xt

(
T ⊗ Int

))−1(
TH ⊗ Int

)
XH

t

)
⊗ Inr

]
yt

(9.4.47)

and finally the frequency-domain coefficients can be computed via

ĥf = (T ⊗ Inrnt)ĥt

=
[((

T ⊗ Int

)((
TH ⊗ Int

)
XH

t Xt

(
T ⊗ Int

))−1(
TH ⊗ Int

)
XH

t

)
⊗ Inr

]
yt

(9.4.48)

Example 9.3: Equivalence of time and frequency-domain estimation for L = N0.
If L = N0, the time-domain channel estimation and the frequency-domain channel
estimation procedures become equivalent. To see this, note that in this case, T is
square and unitary:

TTH = I (9.4.49)

Hence, (9.4.48) becomes:

ĥf =
[((

XH
t Xt

)−1
XH

t

)
⊗ Inr

]
yt (9.4.50)

or equivalently,

Ĥ
( 2π

N0
n
)
= Y t(n)XH

t (n)
(
Xt(n)XH

t (n)
)−1

(9.4.51)

which is (9.4.38).

Finally we note that the design of optimal training for ST-OFDM has been
discussed in, for instance, [Li et al., 1999], [Tung et al., 2001], [Negi and
Cioffi, 1998] and [Larsson and Li, 2001]. The first three references treat the
problem in a general context, while the last paper focuses on the case when not
all subcarriers are used.
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9.5 Blind and Semi-Blind Detection Methods

In this section we describe two recent methods that can have some performance
advantages relative to the training-based ML. These methods are called blind and
semi-blind, respectively, and were proposed in [Stoica and Ganesan, 2003],
[Larsson et al., 2003]; however, our presentation is slightly different from
that in these articles. Related methods were also suggested in, for instance,
[Swindlehurst and Leus, 2002], [Moguez and Castedo, 2002]. Note that
the notion of blind channel estimation for communications, based on second-order
data, goes back at least to [Tong et al., 1994] (see also the references therein).

The common core of the methods in [Stoica and Ganesan, 2003], [Larsson
et al., 2003] is an iterative scheme that attempts to obtain the minimum of the
ML metrics (9.1.4) and (9.1.12) by means of a cyclic minimizer; the blind and
the semi-blind schemes differ simply in the way this cyclic minimizer is initialized.
The complexity of the blind and semi-blind methods is relatively low and they are
applicable regardless of whether the symbols belong to a unitary constellation or
not. These methods are applicable to STBC in general, but the detection step in
the algorithm simplifies if an OSTBC is used.

9.5.1 Cyclic Minimization of the ML Metric

The cyclic iterative scheme for minimizing the ML metric is outlined below and
illustrated in Figure 9.2.

1. Obtain an initial estimate of the channel H and the noise covariance matrix
Λ, for instance blindly or by using training.

2. Use the so-obtained channel estimate in the coherent detector (see Sec-
tion 9.1).

3. Re-estimate the channel using the detected symbols from Step 2, via:

Ĥ = Y X̂(X̂X̂
H
)−1 (9.5.1)

(see (9.3.2)) and the noise covariance via:

Λ̂ =
1

Nt +NbN
Y Π⊥

X̂
H Y H (9.5.2)

(see (9.3.24)), for colored noise, or via:

σ̂2 =
1

(Nt + NbN)nr
Tr
{

Y Π⊥
X̂

H Y H
}

(9.5.3)
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Figure 9.2. Flowchart of the cyclic detection/estimation scheme.

(see (9.3.4)), for white noise. Here X̂ is the concatenation of the STBC blocks
(see (9.1.1)) corresponding to the most recent estimate of the symbols.

4. Iterate until convergence or until a pre-imposed number of steps have been
carried out.

Note that, the initialization step aside, the above algorithm is nothing but a
cyclic minimizer of the ML metric. A cyclic minimizer [Zangwill, 1967] min-
imizes an objective function by partitioning the free variables into two groups
Ω1,Ω2 and proceeding as follows. First, minimize the objective function over Ω1
while keeping Ω2 fixed. Next, minimize the function over Ω2 while keeping Ω1
fixed at its most recently determined value. Finally, iterate these two steps un-
til convergence. As is known, and as we explain in the following, such a cyclic
minimizer will converge under general conditions.

For simplicity, let us consider the ML metric (9.1.5) associated with white
noise; similar results hold in the case of colored noise. Let fk be the value of the
ML metric (9.1.5) after k iterations and let f∗ be the value of it at its minimum.
Of course, fk ≥ f∗ for all k. We have that

f∗ = min
X

Tr
{
Y Π⊥

XH Y H
}

(9.5.4)

and consequently f∗ > 0 with probability one. Since each of the Steps 2 and
3 in the cyclic minimization algorithm above can only decrease the value of the
objective function, we have that fk ≤ fk−1 for all k ≥ 1. It follows that {fk} forms
a monotonically non-increasing sequence that must converge to

f∞ � inf{fk} ≥ f∗ (9.5.5)

(see, e.g., [Rudin, 1976]). This value f∞ corresponds to the value of the ML
metric at the point of convergence, which must be at least a local minimum of
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the ML metric. Whether the so-obtained point of convergence is equal to the
global minimum of the ML metric is a more difficult question — note that in
general for nonlinear optimization problems the global minimum of a non-convex
function is usually hard to obtain. However, since the cyclic algorithm is initialized
reasonably well, and since the iteration can only decrease the value of the ML
metric, we expect the cyclic algorithm to perform well in the sense that the point
of convergence should at least be close to the global minimum of the ML metric.

Example 9.4: Blind detection of OSTBC.
The article [Stoica and Ganesan, 2003] suggested a blind approach to the
detection of OSTBC, that does not require any training block. Let us define
h = vec(H). Then the ML metric in (9.1.5) can be rewritten as:

‖Y − HX‖2 = Tr
{
Y Y H

}
+ ‖H‖2‖s′‖2 − 2Re

{
Tr
{
Y HHX

}}

= ‖s′‖2‖h‖2 − 2Re
{
hHFs′

}
+ const.

= ‖F − hs′T ‖2 + const.

(9.5.6)

where s′ is defined in (9.1.9) and F is defined by

F =
[
F
(a)
1 · · · F

(a)
Nb

F
(b)
1 · · · F

(b)
Nb

]

F
(a)
k =

[
vec(Y kA

H
1 ) · · · vec(Y kA

H
ns
)
]
, k = 1, . . . , Nb

F
(b)
k =

[−i vec(Y kB
H
1 ) · · · −i vec(Y kB

H
ns
)
]
, k = 1, . . . , Nb

(9.5.7)

To perform ML detection, the metric ‖F − hs′T ‖2 must be minimized jointly
with respect to h and s′. If we neglect the constraint that s′ belongs to a finite
alphabet, this minimum is achieved by taking h and s′ equal to the left and right
singular vectors of the matrix F , which correspond to its largest singular value.
Clearly, at least one element of s′ or h must be known for these two singular
vectors to uniquely define h and s′. If both s′ and h are unconstrained vectors,
an ambiguity exists since αs′ and (1/α)h would also minimize the same criterion.
Hence, the blind algorithm requires (only) one pilot symbol. The so-obtained
estimate of h can be used in the cyclic minimization algorithm described above.
Note that if a training block is present, the blind approach is in principle still
applicable (with some algebraic modifications), even though the training-based
or semi-blind methods (i.e., estimation of the channel followed by iteration as in
Figure 9.2) may be preferable for several reasons.

We can make a connection between the blind algorithm outlined in this section
and the exact ML detection for OSTBC discussed in Example 9.2 (see page 170).
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If no training is present and the constellation |S| is unitary, the concentrated ML
metric is proportional to s′TFHFs′ (see (9.3.9)). If, like for the blind method
above, we relax the optimization problem neglecting the constraint that s′ belongs
to a finite alphabet, the symbol vector s′ that minimizes s′TFHFs′ is given by
the right singular vector of F that corresponds to the largest singular value of this
matrix. This is, however, the same solution as given by the blind algorithm. Like
for the blind algorithm, for this singular vector to uniquely define s′, at least one
of its elements must be known.

Example 9.5: Blind, trained, and semi-blind detection of OSTBC.
In this example (see [Stoica and Ganesan, 2003]) we consider a system with
nt = 3 transmit antennas and nr = 2 receive antennas using the code (7.4.8). The
elements of the channel matrix H are independent and zero-mean Gaussian with
variance ρ2, and the transmitted symbols belong to a BPSK constellation. The
noise is white and has variance σ2. A variable number, Nb, of OSTBC matrices
were transmitted sequentially and preceded by one training block that consisted
of a known OSTBC matrix. Figure 9.3 shows the BER versus the SNR for three
different values of Nb, namely Nb = 4, 16 and 64. From the figure, we can see
that the semi-blind detector is always better than the blind detector. This is not
surprising since the former makes use of the training data, while the latter does
not. However, for large values of Nb, the performance of the blind detector gets
somewhat closer to that of the semi-blind one. We also observe that the BER for
the semi-blind detector is smaller than that corresponding to the trained detector.
This may be expected in view of the fact that the training-based detector is just
the first step of the semi-blind one.

The next two examples (see also [Larsson et al., 2003]) will illustrate the
application of the training-based and semi-blind detection methods in the presence
of white and colored noise, respectively.

Example 9.6: Trained and semi-blind detection for OSTBC (white noise).
We consider a system with nt = 2 transmit and nr = 2 receive antennas using the
Alamouti code and BPSK signalling. The channel noise is spatially and temporally
white Gaussian, that is, the columns of E are independent outcomes of a N(0, σ2I)
distribution. The elements of the channel gain matrix H in different simulation
runs are independent realizations of a Gaussian random process with mean zero
and variance ρ2, and the SNR is defined as ρ2/σ2. Figure 9.4 shows an estimate
of the BER as a function of the SNR. We note that the semi-blind ML receiver
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Figure 9.3. Results for Example 9.5. Coherent, training-based, semi-blind and blind detection
for block lengths Nb = 4, 16 and 64.

outperforms the training-based algorithm by about 1 dB for the case when the
receiver assumes the noise to be white, and by more than 2 dB in the case when
the receiver assumes the noise to be colored. For the semi-blind ML receiver
assuming white noise, the detection loss (i.e., the performance loss due to the need
for estimating the channel), is less than 1 dB. This loss is somewhat higher for
the receivers assuming colored noise (indeed, the receivers assuming white noise
outperform those assuming colored noise by about 2 dB). The latter fact is not
surprising since the receiver structures assuming colored noise are not parsimonious
for this example.
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Figure 9.4. Results for Example 9.6. Only white noise is present. The figure shows the estimated
bit-error-rate (BER) vs. the signal-to-noise ratio (SNR) for the coherent ML receiver (assuming
perfect knowledge of H and Λ), the training-based white and colored receivers, and the semiblind
white and colored receivers using n iterations.

Example 9.7: Trained and semi-blind detection for OSTBC (spatially colored noise).
In this example we consider the same system as in Example 9.6 but with one
strong interference signal present. The interference signal is temporally white, has
a power equal to that of the signal of interest and a channel gain vector which is
also zero-mean Gaussian and independent of all other random quantities. White
Gaussian noise is added to the received signal in the same way as for Example 9.6
above. Figure 9.5 shows the BER vs. the SNR for the different schemes (the SNR
here is the ratio of the signal power to the power of the thermal noise, while the
power of the interference signal is kept constant). We note that the semiblind
algorithm outperforms the training-based method by more than 2 dB and that
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Figure 9.5. Results for Example 9.7. One strong interference signal is present.

the detection loss for the “colored” receiver is about 2 dB (which is of the same
order as for Example 9.6). Note also that for high SNR, the receiver that assumes
colored noise significantly outperforms the receiver that assumes white noise. In
particular, the receivers relying on the white noise assumption seem to approach an
error floor as SNR increases. On the other hand, when the SNR is sufficiently low,
the true covariance matrix of the noise and interference is close to a scaled identity
matrix, and for that reason the “white” receiver performs somewhat better than
the “colored” receiver in this case.
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9.6 Differential Space-Time Block Coding

The space-time coding schemes discussed in the previous chapters assumed that
the channel was known at the receiving end. If the channel is fading slowly then
its gain matrix can be estimated at the receiver via the methods described in
Section 9.4. However, this approach may not work if the channel is changing
rapidly; moreover a training-based approach will require the transmission of pilot
symbols which in turn reduces the achievable data rate. In a single antenna system,
one solution to this problem is to use a differential modulation scheme like DPSK
[Proakis, 2001, Sec. 5.2.8]. In this section we discuss the extension of differential
modulation to communication systems using multiple antennas; our discussion is
mostly based on results from [Hughes, 2000], [Hochwald and Sweldens,
2000], [Ganesan and Stoica, 2002b], [Ganesan and Stoica, 2002a] (see
also [Tarokh and Jafarkhani, 2000], [Jafarkhani and Tarokh, 2001],
[Hassibi and Hochwald, 2002a], [Liang and Xia, 2002] for some related
results). We also describe a differential encoding and detection scheme for OSTBC
that works well for up to nt = 8 transmit antennas.

9.6.1 Review of Differential Modulation for a SISO System

Consider a system with a single transmit and a single receive antenna. If we
transmit a scalar complex symbol s taken from a finite alphabet S the received
signal is given by

y = hs + e (9.6.1)

where h is the complex channel gain and e is noise. Assume that h is known to the
receiver. Then if the noise is Gaussian, the ML detection of s given y is equivalent
to minimizing:

|y − hs|2 (9.6.2)

with respect to s ∈ S, which is a trivial scalar detection problem.
If h is not known at the receiver, we can proceed via differential encoding and

detection as we describe next. The idea of differential encoding is to encode the
information in the phase difference between two consecutively transmitted sym-
bols, and to consider for detection a block of two consecutively received symbols
at the receiver. Suppose {sk} is a stream of symbols to be transmitted. Instead
of sending {sk} directly we form another set of symbols {wk} which is defined by:

wk = wk−1sk
w0 = 1 (9.6.3)



Section 9.6. Differential Space-Time Block Coding 191

and transmit this sequence {wk} instead. At the beginning of the transmission
we transmit w0 = 1, and after that we transmit wk which depends on sk through
(9.6.3). In a strict sense, differential encoding is meaningful only if the constellation
S is unitary, i.e., |s| = 1 for all s ∈ S, since in that case it follows immediately
from (9.6.3) that |wk|2 = 1 for any k (which means that the transmit power does
not vary with k). Hence we assume that |sk| = 1 in the following.

To decode the symbols {sk} we proceed as follows. Let yk and yk−1 be the
received signals corresponding to wk and wk−1 respectively. Then we have that

yk = hwk + ek

= hwk−1sk + ek (9.6.4)

and
yk−1 = hwk−1 + ek−1 (9.6.5)

provided that h remains constant during the transmission of the two symbols. The
ML detection of sk given yk and yk−1 is equivalent to minimizing

|yk−1 − hwk−1|2 + |yk − hwk|2 = |yk−1 − hwk−1|2 + |yk − hwk−1sk|2
= |yk−1 − g|2 + |yk − gsk|2
= |yk−1 − g|2 + |s∗kyk − g|2

(9.6.6)

where we defined g = hwk−1. The minimization of (9.6.6) with respect to g gives

g =
yk−1 + s∗kyk

2
(9.6.7)

Inserting (9.6.7) into (9.6.6) shows that the ML detection of sk amounts to mini-
mizing

|yk−1 − yks
∗
k|2 (9.6.8)

Using the constraint that |sk| = 1, we find that minimizing the latter function is
equivalent to maximizing

Re {yk−1y∗ksk} = Re {φdiffsk} (9.6.9)

where φdiff = yk−1y∗k, which is again a trivial scalar detection problem.
Although the differential detection scheme does not require the receiver to know

the channel, the performance is worse by about 3 dB than for coherent detection.
This is shown, for instance, in [Proakis, 2001, Sec. 5.2.8], but it can also be
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seen easily from the above equations. As S is a unitary constellation, it is clear
from (9.6.2) that the coherent detection of s amounts to maximizing

Re {y∗hs} = Re {φcohs} (9.6.10)

where φcoh = y∗h. The SNR in φcoh is easily found to be equal to |h|2/σ2, where
σ2 is the variance of the noise e. On the other hand, for (9.6.9) we have that

φdiff = yk−1y∗k = |h|2s∗k + hwk−1e∗k + h∗w∗
kek−1 + ek−1e∗k (9.6.11)

Neglecting the last term in (9.6.11), which is of higher order, the SNR in φdiff is
found to be equal to |h|2/(2σ2). Thus the differential detection method effectively
trades the need for channel knowledge for a 3 dB performance loss.

9.6.2 Differential Modulation for MIMO Systems

In the case of multiple antenna systems we deal with matrices instead of scalars,
and instead of unitary symbols we will work with unitary matrices [Hochwald
and Sweldens, 2000], [Hughes, 2000]. Let {Xk} be a set of unitary matrices
to be transmitted. Equation (9.6.3) can easily be extended to this case: instead
of transmitting {Xk} we encode the information differentially by forming a new
set of matrices {W k} as follows:

W k = W k−1Xk (9.6.12)
W 0 = I (9.6.13)

Since {Xk} are unitary and W 0 = I it follows readily that WH
k W k = I for any

k. This is important as it means that the transmit power is kept constant.
If W k is transmitted, the received nr × nt matrix (note that N = nt) is:

Y k = HW k + Ek

= HW k−1Xk + Ek (9.6.14)

where, making the same assumptions as before, the noise term Ek has independent
complex Gaussian elements with variance σ2. If HW k−1 were known at the
receiver, then we could simply use the coherent ML detector in Section 9.1. When
the channel is unknown, we can decode Xk using two consecutively received blocks
Y k and Y k−1 in a fashion similar to the procedure in Section 9.6.1. Assume, as in
the SISO case, that H is constant over the two blocks transmitted at time k − 1
and k. Then

Y k−1 = HW k−1 + Ek−1 (9.6.15)
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Detection of Xk from Y k and Y k−1 in an ML sense amounts to minimizing the
following metric:

‖Y k − HW k−1Xk‖2 + ‖Y k−1 − HW k−1‖2
= ‖Y kX

H
k − HW k−1‖2 + ‖Y k−1 − HW k−1‖2 (9.6.16)

where we have used the fact that Xk is unitary. The matrix HW k−1 is a com-
pletely unknown quantity, and minimization of (9.6.16) with respect to it yields:

ĤW k−1 =
1
2
(Y kX

H
k + Y k−1) (9.6.17)

Substituting (9.6.17) in (9.6.16) shows that the ML detection of Xk amounts to
minimizing:

‖Y kX
H
k − Y k−1‖2 = −2Re{Tr{XkY

H
k Y k−1

}}
+ const. (9.6.18)

with respect to Xk, or equivalently, maximizing

Re
{
Tr
{
XkY

H
k Y k−1

}}
(9.6.19)

with respect to Xk (cf. (9.6.9) for the SISO case). Note that the ML detector in
(9.6.19) is valid for any set of unitary matrices {Xk}.

Analysis and Design of Differential Codes

The performance of differentially detected space-time codes can be quantified by
using Theorem 4.4 (see page 49). By writing (9.6.14) and (9.6.15) as

[
Y k Y k−1

]
= HW k−1

[
Xk I

]
+
[
Ek Ek−1

]
(9.6.20)

we can treat differential detection as the problem of detecting
[
Xk I

]
nonco-

herently with HW k−1 as an unknown effective channel. Applying Theorem 4.4
(assuming that H has independent Gaussian elements with variance ρ2, for sim-
plicity) we obtain:

EH[P (X0
k → Xk)] ≤

∣∣
∣Z0

kΠ
⊥
ZH

k
Z0H

k

∣∣
∣
−nr ·

(
ρ2

4σ2

)−nrnt

(9.6.21)

where Z0
k =

[
X0

k I
]
is the true transmitted matrix and Zk =

[
Xk I

]
is any

other hypothetical signal. Simplifying (9.6.21) using

ZkZ
H
k =

[
Xk I

]
[
XH

k

I

]
= 2 · I = Z0

kZ
0H
k (9.6.22)
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yields

EH[P (X0
k → Xk)] ≤

∣
∣∣Z0

kΠ
⊥
ZH

k
Z0H

k

∣
∣∣
−nr ·

(
ρ2

4σ2

)−nrnt

=
∣∣
∣∣
[
X0

k I
]
(

I − 1
2
·
[
XH

k

I

]
[
Xk I

]
)[

X0H
k

I

]∣∣
∣∣

−nr

·
(

ρ2

4σ2

)−nrnt

=
∣
∣∣
∣2 · I − 1

2
· (X0

kX
H
k + I)(X0

kX
H
k + I)H

∣
∣∣
∣

−nr

·
(

ρ2

4σ2

)−nrnt

=
∣
∣∣
∣I − 1

2
· (X0

kX
H
k + XkX

0H
k )

∣
∣∣
∣

−nr

·
(

ρ2

4σ2

)−nrnt

(9.6.23)

Minimization of (9.6.23) was the approach used to design unitary matrix constel-
lations {Xk} in [Hughes, 2000]. The cited paper imposed the constraint that the
set of matrices {Xk} should constitute a finite algebraic group (in other words, if
Xk and X l are two permissible code matrices then their product must also be a
valid code matrix). Sometimes this is a desirable property, yet the class of code
matrices that form a group is rather limited and we can expect that better codes
can be obtained by abandoning the group structure. As shown in [Ganesan and
Stoica, 2002b], this is indeed the case: OSTBC can more simply and efficiently
be used for differential MIMO modulation. This is the topic of the next subsection.

Using OSTBC for Differential Detection

For an arbitrary set of unitary code matrices {Xk} the ML detector can be com-
putationally intensive as the minimization of (9.6.18) requires a search through all
possible Xk. However, as we show next, if we design {Xk} using OSTBC, the
computational complexity can be reduced considerably. Moreover, it turns out
that the codes based on OSTBC can have a better performance than the group
codes of [Hughes, 2000].

As already stated, to use differential encoding in a MIMO system, we need to
implement the matrix multiplication in (9.6.12) for all k, which in turn requires
that the matrices {Xk} are square and unitary. For OSTBC, the code matrices
have a semi-unitary structure, but they are not square in general; in fact, the only
instances of commonly used square OSTBC matrices, for both real and complex
symbols, correspond to the cases of nt = 2, 4 and 8 transmit antennas. Therefore,
we consider first differential encoding for square OSTBC, and later we show how
the so-obtained scheme for square OSTBC can be modified to transmit non-square
blocks for up to nt = 8 transmit antennas.



Section 9.6. Differential Space-Time Block Coding 195

Square Differential OSTBC: Let us first consider that nt = 2, 4 or 8, in which
case the best known OSTBCmatrices are square (see (7.4.6), (7.4.10) and (7.4.11)),
and have rates 1, 3/4 and 1/2, respectively. Let s

(k)
1 , . . . , s

(k)
ns denote the symbols

to be transmitted at time k. Assume that these symbols are taken from a unitary
constellation S, that is, |s(k)n | = 1 for all s

(k)
n ∈ S. Let {An}ns

n=1 and {Bn}ns
n=1 be

the set of nt × nt matrices associated with the OSTBC under consideration, and
define the following normalized OSTBC matrix:

Xk =
1√
ns

ns∑

n=1

(
s̄(k)n An + is̃(k)n Bn

)
(9.6.24)

The normalization with the factor 1/
√

ns in (9.6.24) is necessary to make Xk

unitary:

XkX
H
k =

1
ns

ns∑

n=1

|s(k)n |2 · I = I (9.6.25)

Hence, by using (9.6.24) in (9.6.12) we can obtain directly a scheme for differential
encoding and detection of OSTBC.

The differential scheme for OSTBC can be extended to nt > 8 transmit anten-
nas, but such an extension may be of little interest since square OSTBC matrices
for nt > 8 have rates (much) less than 1/2 (see Appendix B).

Non-Square Differential OSTBC: In the case of nt = 3, 5, 6, and 7 transmit
antennas, we can modify the above scheme as follows.
The case of nt = 3: Let W

(4)
k be the 4 × 4 unitary matrix at time k (after

differential encoding as in (9.6.12)), designed for 4 transmit antennas. For nt = 3,
let us transmit the matrix Φ3W

(4)
k where

Φ3 =

⎡

⎣
1 0 0 0
0 1 0 0
0 0 1 0

⎤

⎦ (9.6.26)

Of course, transmitting Φ3W
(4)
k is equivalent to transmitting the first three rows

of W
(4)
k . The received matrix Y k can be written as:

Y k = HΦ3W
(4)
k + Ek

= ȞW
(4)
k + Ek (9.6.27)

where
Ȟ = HΦ3 (9.6.28)
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and hence the multiplicative factor Φ3 can be “absorbed” into the effective channel
matrix Ȟ. From (9.6.27) it follows that the receiver can use the ML detector in
(9.6.18) with Xk as defined for the case of nt = 4 transmit antennas.
The case of nt = 5, 6, 7: In a fashion similar to that in the previous paragraph,

let W
(8)
k denote the 8 × 8 unitary matrix corresponding to 8 transmit antennas.

We transmit the first nt rows of the matrix W
(8)
k , or equivalently, ΦntW

(8)
k where

Φnt is an nt × 8 matrix given by

Φnt =
[
Int×nt 0nt×(8−nt)

]
(9.6.29)

Again the detector in (9.6.18) can be used directly, with HΦnt in lieu of H and
with Xk as defined for the case of nt = 8 transmit antennas.

ML Detector for Differential OSTBC: The ML detector in (9.6.18) associated
with differentially encoded OSTBC simplifies considerably compared to minimiz-
ing (9.6.18) for general unitary code matrices {Xk}. To verify this fact, let us
substitute (9.6.24) in (9.6.18). Then we obtain the following ML criterion that is
to be minimized with respect to {s(k)n ∈ S}:

ns∑

n=1

(
− Re

{
Tr
{
Y H

k Y k−1An

}}
s̄(k)n + Im

{
Tr
{
Y H

k Y k−1Bn

}}
s̃(k)n

)
(9.6.30)

The above detector has the same decoupled form and computational complexity
as the standard coherent detector for OSTBC in Section 7.4.

At this point, we should remark on the fact that another approach to OSTBC
differential detection was proposed in [Tarokh and Jafarkhani, 2000]. While
the encoding complexity of the scheme in [Tarokh and Jafarkhani, 2000]
(see also [Jafarkhani and Tarokh, 2001]) is similar to that of the approach
described above, the decoding associated with the approach in the cited papers (as
well as the differential method in [Hughes, 2000]) is somewhat more complicated
than that in (9.6.30).

SNR for Differential Detection with OSTBC: Comparing (9.6.30) with the ex-
pressions in Section 7.4.2 we see that the differential ML detector has exactly the
same form as the coherent ML detector, but with Y k−1 instead of H . In other
words, the differential detector (9.6.30) can be thought of as a way of forming the
decision statistic ŝ in Theorem 7.3 (see page 107) by using Y k−1 instead of the
true channel matrix H . Inspired by this analogy, we can calculate the SNR for
the differential MIMO detector as we did for the SISO case in Section 9.6.1. Note
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first that

Y H
k Y k−1 = (HW k−1Xk + Ek)H(HW k−1 + Ek−1)

= XH
k WH

k−1H
HHW k−1 + EH

k HW k−1
+XH

k WH
k−1H

HEk−1 + EH
k Ek−1 (9.6.31)

Let us consider the decision statistic for s̄
(k)
n (the corresponding decision statistic

for s̃
(k)
n can be handled in a similar manner). Using (9.6.31) it is possible to show

that

Re
{
Tr
{
AnY H

k Y k−1
}}

=
1√
ns

Tr{HHH}s̄(k)n

+Re
{
Tr
{
AnEH

k HW k−1
}}

+Re
{
Tr
{
AnXH

k WH
k−1H

HEk−1
}}

+Re
{
Tr
{
AnEH

k Ek−1
}}

(9.6.32)

To show (9.6.32), use (7.4.4) and the fact that Re{Tr {X}} = 0 if X = −XH .
If the noise variance σ2 is small enough we can neglect the last term in (9.6.32).
The remaining two noise terms are uncorrelated to one another and have the same
variance. Using these facts we can show that approximately:

√
ns

Re
{
Tr
{
AnY H

k Y k−1
}}

‖H‖2 ∼ N
(
s̄(k)n , ns · σ2

‖H‖2
)

(9.6.33)

Comparing (9.6.33) with the corresponding equation for coherent detection in The-
orem 7.3 (see page 107), using ρ2 = nt/ns to achieve the same power normalization
as in the present case, we can see that the SNR in the statistic used for the dif-
ferential detection of s̄n is (approximately) half the SNR for coherent detection.
This 3 dB SNR loss is analogous to that for conventional DPSK shown in Sec-
tion 9.6.1. Note that this analysis holds true also in the case when H is replaced
by Ȟ = HΦnt as required for using differential OSTBC with nt = 3, 5, 6 and
7 (see (9.6.28) and the related discussion). Indeed, we have ‖H‖2 =

∥∥Ȟ
∥∥2 (as

ΦntΦ
H
nt

= I) and this is precisely what is needed for (9.6.33) to hold when the
effective channel is Ȟ instead of H .

Discussion: Differential detection of OSTBC yields a diversity of the same order
as coherent detection. In particular, the matrix Y k−1 effectively serves as an
effective channel estimate during the detection of Xk from Y k. Hence, application
of Theorem 4.3 (see page 48) to the metric (9.6.18) shows that a diversity of order
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nrnt is achieved for differential detection as well. This observation reinforces the
previously observed fact that the only difference between the performances of
coherent and differential detection is a 3 dB loss in SNR.

The data rate achieved by the differential detection scheme is the same as
that achieved by the coherent detection scheme. The coherent detection scheme
assumed that the receiver had perfect knowledge about the channel, which is cer-
tainly not the case in practice. The channel can be estimated by the receiver via
training, but this requires that the channel remains constant during the train-
ing block (see, e.g., [Peel and Swindlehurst, 2001] for a discussion of the
performance tradeoffs associated with the use of training-based and differential
modulation on a time-varying channel). Training also needs extra bandwidth for
the transmission of pilot symbols. The differential detection scheme does not trans-
mit any explicit training data and therefore the channel can change faster. If we
transmit nt × N blocks we require the channel to be practically constant for 2N
symbol periods. Also, since there is no explicit training involved there is no loss of
bandwidth. These features of the differential scheme are attractive, but they come
at the cost of a 3 dB loss in performance compared to coherent detection (even
though the diversity gain is the same for differential detection and for coherent
detection); additionally, if the channel is slow fading the differential scheme cannot
make use of that information, whereas a training-based scheme can.

Example 9.8: Differential OSTBC vs. Group Codes.
In this example (see [Ganesan and Stoica, 2002a]), we compare differential
Alamouti OSTBC with the differential technique of [Hughes, 2000] for a system
with nt = 2 and nr = 1. We transmit two bits per time interval; hence the
differential OSTBC uses QPSK modulation whereas the code matrices for the
differential group code of [Hughes, 2000] are taken from a set of 16 possible
matrices. Figure 9.6 shows the BER for the two methods, as well as the BER
corresponding to coherent detection. For the group code, it is necessary to specify
a mapping between each code matrix and the associated transmitted information
bits; for this purpose we used a labelling technique similar to Gray coding. For this
example, the differential OSTBC code outperforms the group code of [Hughes,
2000] by about 3 dB. More numerical examples, as well as analytical comparisons
of coding gains, can be found in [Ganesan and Stoica, 2002a], [Ganesan and
Stoica, 2002b].
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Figure 9.6. BER for differential and coherent OSTBC using QPSK modulation, and for the
differential group code proposed in [Hughes, 2000]. Two information bits per time interval are
transmitted.

9.7 Channels with Frequency Offsets

All the detection methods discussed so far assume that the channel remains ap-
proximately constant for a certain number of blocks. For example, for the training-
based scheme and its relatives in Section 9.4, the channel must remain unchanged
over a period of time corresponding to the Nb transmitted blocks. The differential
method in Section 9.6 is less restrictive as it requires that the channel is constant
over only two consecutive blocks. However, in practice, there may be situations
when the channel is changing so fast that even the assumptions made by the dif-
ferential detector are not adequate. For instance, the channel may be affected
by a frequency offset that can be either due to Doppler or to a carrier frequency
mismatch between the receiver and the transmitter.
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The problem of space-time coding for time-varying MIMO channels was ad-
dressed in [Liu et al., 2001a] where a double differential diagonal space-time
code was proposed. In this section we discuss how a general STBC (in particular,
OSTBC) can be used on channels with frequency offsets. It appears that there is
no simple way to devise a double differentially encoded scheme based on (O)STBC
for the case of channels with frequency offsets; however, we can devise a receiver
structure for this case by estimating the channel and the frequency offsets, and
utilizing the so-obtained knowledge in a “coherent” decoder. It turns out that
for transmission with the same spectral efficiency, the scheme described in what
follows can outperform the double differential scheme that uses diagonal codes.
Most results presented in this section are due to [Stoica and Ganesan, 2002b],
[Besson and Stoica, 2002].

9.7.1 Channel Model

Consider a flat fading channel which is affected by Doppler shifts and carrier
frequency offsets. Then the output of the kth receive antenna can be written as
(see [Liu et al., 2001a] for a detailed derivation of this equation):

yk(n) =
nt∑

l=1

hk,le
iωklnxl(n) + ek(n) n = 0, . . . , N − 1 (9.7.1)

In (9.7.1), the channel gains {hk,l} are assumed to be unknown constants that do
not change over the time interval of interest. Also, {xl(n)} are the complex symbols
transmitted through antenna l, and {ωkl} is a set of frequency offsets associated
with each receive and transmit antenna. Note that we allow the frequency offsets
to be different for each transmit and receive antenna; hence the model (9.7.1)
contains nrnt unknown frequency offsets. Finally, in (9.7.1), {ek(n)} is spatially
and temporally white noise with variance σ2 per antenna.

9.7.2 ML Estimation of {ωkl} and {hkl}
If {ωk,l} and {hk,l} were known, it would be easy to derive a coherent detector
simply by modifying that in Section 9.1 (for general linear STBC) or that in
Section 7.4.2 (for OSTBC) to compensate for the time-variation of the channel
matrix; we leave doing so to the reader. Our ultimate goal is a receiver structure
that estimates {ωkl} and {hkl} via training and uses these estimates in the coherent
detector in a fashion similar to Section 9.4. Hence we assume in this subsection
that {xl(n)} are pilots that are known to the receiver.
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Introduce the following notation:

hk =
[
hk,1 · · · hk,nt

]T

ωk =
[
ωk,1 · · · ωk,nt

]T

yk =
[
yk(0) · · · yk(N − 1)

]T
(9.7.2)

and

Xωk
=

⎡

⎢⎢
⎢⎢
⎢⎢
⎣

x1(0) · · · xnt(0)
x1(1)eiωk,1 · · · xnt(1)e

iωk,nt

...
...

...
...

...
...

x1(N − 1)ei(N−1)ωk,1 · · · xnt(N − 1)ei(N−1)ωk,nt

⎤

⎥⎥
⎥⎥
⎥⎥
⎦

(9.7.3)

Under the assumption made on the noise the ML estimation of {ωk,l} and {hk,l},
given that {xl(n)} are known, amounts to minimizing the following metric:

nr∑

k=1

‖yk − Xωk
hk‖2 (9.7.4)

Each of the terms in the sum in (9.7.4) depends on one hk and ωk only, and hence
each term can be minimized independently. It readily follows that for a given ωk,
the minimizer of (9.7.4) with respect to hk is:

ĥk = (XH
ωk

Xωk
)−1XH

ωk
yk (9.7.5)

Inserting (9.7.5) in (9.7.4) shows that the estimates of the frequency offsets are
obtained as the maxima with respect to ωk,l of the following function:

yH
k Xωk

(XH
ωk

Xωk
)−1XH

ωk
yk = yH

k ΠXωk
yk (9.7.6)

The matrix ΠXωk
depends on ωk in a highly nonlinear manner. Hence, in general,

maximizing (9.7.6) is a hard problem that requires an nt-dimensional search.
In the special case in which XH

ωk
Xωk

is diagonal we can decouple the nt-
dimensional problem into nt one-dimensional problems. The matrix XH

ωk
Xωk

can
be made diagonal by an appropriate choice of the pilot symbols {xl(n)}. For the
sake of brevity we consider the case of nt = 2 transmit antennas, but the results
can be easily extended to any number of transmit antennas. Let

xl =
[
xl(0) · · · xl(N − 1)

]T

ak,l =
[
1 eiωk,l · · · ei(N−1)ωk,l

]T (9.7.7)
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and note that

XH
ωk

Xωk
=
[ ‖x1‖2 aH

k,1Dak,2

aH
k,2D

Hak,1 ‖x2‖2
]

(9.7.8)

where

D =

⎡

⎢⎢
⎢⎢
⎣

x∗
1(0)x2(0) 0 · · · 0

0 x∗
1(1)x2(1)

. . .
...

...
. . . . . . 0

0 · · · 0 x∗
1(N − 1)x2(N − 1)

⎤

⎥⎥
⎥⎥
⎦

(9.7.9)

It is clear that XH
ωk

Xωk
is a diagonal matrix for all ωk,1, ωk,2 if and only if

D = 0 (9.7.10)

Assume for simplicity that N is even. Then the condition (9.7.10) is satisfied,
for instance, if

x1(2n) = 0 x1(2n + 1) = s1(n)
x2(2n) = s2(n) x2(2n + 1) = 0

(9.7.11)

for n = 0, . . . , N/2 − 1, where s1(n) and s2(n) are arbitrary sequences. With the
choice of x1(n) and x2(n) in (9.7.11), the signal at the kth receive antenna takes
on the following form

yk(2n) = hk,2s2(n)ei2nωk,2 + ek(2n)

yk(2n + 1) = hk,1s1(n)ei(2n+1)ωk,1 + ek(2n + 1) (9.7.12)

and the corresponding ML frequency offset estimates are given by:

ω̂k,1 = argmax
ω

∣
∣∣
∣∣
∣

N/2−1∑

n=0

yk(2n + 1)s∗1(n)e
−i2ωn

∣
∣∣
∣∣
∣

2

ω̂k,2 = argmax
ω

∣
∣∣
∣∣
∣

N/2−1∑

n=0

yk(2n)s∗2(n)e
−i2ωn

∣
∣∣
∣∣
∣

2

(9.7.13)

The maxima in (9.7.13) can be found by using the fast Fourier transform. Once
ω̂k,1 and ω̂k,2 have been calculated, the corresponding ML channel gain estimates
can be computed from (9.7.5). We stress the fact that ω̂k,1 and ω̂k,2 above are the
true ML estimates for the choice of pilots in (9.7.11). Note that although only
N/2 samples are used in the estimation, the length of the “aperture” of the data
string is equal to N .
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9.7.3 A Simplified Channel Model

The estimation of the channel parameters can be further simplified if we assume
that the frequency offset associated with a particular receive antenna is the same
for all transmit antennas (i.e., ωk,l = ωk). This is true, for instance, if the frequency
offset is mainly due to a carrier frequency mismatch between the transmit and
receive oscillators (see [Liu et al., 2001a] where this assumption was made and
motivated in some detail). Let ωk denote the frequency offset associated with the
kth receive antenna. Then the signal received by the kth antenna can be written
as (cf. (9.7.1)):

yk(n) = eiωkn
nt∑

l=1

hk,lxl(n) + ek(n) (9.7.14)

for n = 0, 1, . . . , N − 1, where the different terms have the same meaning as in
(9.7.1). Assume that we transmit L blocks of training symbols (each of length N),
and let the N × nt matrix X l denote the lth pilot block (for l = 0, . . . , L − 1):

X l =

⎡

⎢
⎢⎢
⎣

x1(Nl) x2(Nl) . . . xnt(Nl)
x1(Nl + 1) x2(Nl + 1) . . . xnt(Nl + 1)

...
...

...
x1(Nl + N − 1) x2(Nl + N − 1) . . . xnt(Nl + N − 1)

⎤

⎥
⎥⎥
⎦

(9.7.15)

Let hk be as defined before in (9.7.2), and let

yk(l) = [yk(Nl) · · · yk(Nl + N − 1)]T

ek(l) = [ek(Nl) · · · ek(Nl + N − 1)]T (9.7.16)

Using this notation we can write (9.7.14) as follows:

yk(l) = eiωkNlΩkX lhk + ek(l) (k = 1, . . . , nr) (9.7.17)

for l = 0, . . . , L = 1, where:

Ωk =

⎡

⎢⎢
⎢
⎢
⎣

1 0 · · · 0

0 eiωk
. . .

...
...

. . . . . . 0
0 · · · 0 ei(N−1)ωk

⎤

⎥⎥
⎥
⎥
⎦

(9.7.18)

We want to use the pilot blocks and the corresponding received signals,
{yk(0), . . . ,yk(L − 1)}nr

k=1 to estimate {hk} and {ωk}.
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Owing to the assumption made on the noise term in (9.7.17), the ML estimates
of hk and ωk for given {X0, . . . ,XL−1} are obtained by minimizing the following
criterion:

L−1∑

l=0

∥
∥∥yk(l)−ΩkX le

iωkNlhk

∥
∥∥
2

(9.7.19)

As we will see shortly the minimization of (9.7.19) becomes simpler if the pilot
blocks X l are chosen to be square and unitary:

X lX
H
l = I (9.7.20)

Under the assumption (9.7.20) we can write the criterion in (9.7.19) as:

L−1∑

l=0

∥
∥∥XH

l Ω
H
k yk(l)e

−iωkNl − hk

∥
∥∥
2

(9.7.21)

The minimization of (9.7.21) with respect to hk yields:

ĥk =
1
L

L−1∑

l=0

XH
l Ω

H
k e−iωkNlyk(l) (9.7.22)

Inserting (9.7.22) in (9.7.21) shows that the ML estimation of ωk reduces to min-
imizing the following function with respect to ωk:

∥∥
∥∥
∥∥
∥

⎛

⎜
⎝I − 1

L

⎡

⎢
⎣

I
...

eiN(L−1)ωkI

⎤

⎥
⎦
[
I · · · e−iN(L−1)ωkI

]

⎞

⎟
⎠

⎡

⎢
⎣

XH
0 Ω

H
k yk(0)
...

XH
L−1Ω

H
k yk(L − 1)

⎤

⎥
⎦

∥∥
∥∥
∥∥
∥

2

= − 1
L

∥∥
∥
L−1∑

l=0

e−iNlωkXH
l Ω

H
k yk(l)

∥∥
∥
2
+ const. (9.7.23)

Besides choosing {X l} to satisfy (9.7.20) we also choose all of these pilot blocks
to be identical:

X l = X, l = 0, . . . , L − 1 (9.7.24)

Then the function in (9.7.23) takes a simple FFT-like form, and the estimation of
ωk reduces to:

max
ωk

∥∥
∥
L−1∑

l=0

e−iNlωkyk(l)
∥∥
∥
2
+ const. (9.7.25)
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Note that in general we need L ≥ 2 to guarantee the identifiability of both {hk}
and {ωk} in (9.7.17).

In general the estimation of ωk via (9.7.25) is still somewhat complicated as it
requires a one-dimensional search. However, for the special case of L = 2, a closed
form expression for ωk can be obtained. Indeed, for L = 2, (9.7.25) becomes:

∥∥yk(0) + e−iNωkyk(1)
∥∥2

=2Re
{
e−iNωkyH

k (0)yk(1)
}
+ const.

(9.7.26)

The value of ωk that maximizes (9.7.26) is readily seen to be

ω̂k =
1
N

· arg {yH
k (0)yk(1)

}
(9.7.27)

and the corresponding channel estimate is obtained from (9.7.22):

ĥk =
1
2

(
XH
0 Ω̂

H
k yk(0) + XH

1 Ω̂
H
k e−iω̂kNyk(1)

)
(9.7.28)

Note that the frequency estimate in (9.7.27) does not suffer from aliasing-like
effects if and only if ωkN ≤ 2π (where N = nt). This condition may well be
satisfied in practice since usually ωk is quite small.

To summarize, in a fast fading scenario we can choose N = nt and L = 2
(which is the smallest possible value of L) and estimate {ωk,hk} using (9.7.27)
and (9.7.28). Note that the two training blocks used for acquiring channel state
information at the receiver do not have to be adjacent to one another. For instance,
they can be separated by a data block as shown in Figure 9.7. The estimation
formulas in (9.7.27) and (9.7.28) can be easily modified to take into account the fact
that the training blocks are not consecutive. Assuming ns symbols per block, the
transmission rate of the scheme in Figure 9.7 is ns/(nt+nt), which for N = nt = ns

becomes 1/2. Also note that the scheme relies on the assumption that the channel
(i.e, {hk} and {ωk}) is nearly constant over three blocks (which is basically what
a double differential scheme would also require; see [Liu et al., 2001a]). Finally,
note that the above algorithm developed for channel estimation using pilot blocks
can be used with any type of space-time code. We conclude this section with the
following simulation example based on OSTBC.

Example 9.9: Trained OSTBC vs. Double Differential Diagonal Codes.
In this example (see [Stoica and Ganesan, 2002b]) we consider a system with
nt = 2 transmit antennas and nr = 1 receive antenna. We assume that the
frequency offsets {ωk} are random and uniformly distributed between 0 and 0.5
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ntnt

Figure 9.7. Transmission scheme for fast fading.

rad/s. The complex channel coefficients {hk,l} are assumed to be independent and
Gaussian with mean zero and unity variance. The transmission scheme is the one
in Figure 9.7. We transmit one 2×2 training block X = I followed by a data block
which in turn is followed by another training block and so on. The data block is an
Alamouti OSTBC matrix with symbols taken from a QPSK constellation. Thus
the effective data rate is R = 1/2. For a given data block, we use the two training
blocks adjacent to it to estimate the channel and frequency offsets; doing so allows
the channel to change very rapidly.

In Figure 9.8 we show the estimated BER versus the SNR. For comparison, we
also plot the BER associated with the double differential scheme in [Liu et al.,
2001a] (using the same total transmit power, and with the same effective data
rate). From the figure it can be seen that the scheme using pilot blocks and
OSTBC outperforms the one in [Liu et al., 2001a] by about 3 dB. Moreover
the OSTBC is simpler to decode.

9.8 Summary and Discussion

The present chapter has covered several interrelated topics. We started in Sec-
tion 9.1 by discussing coherent detection of linear space-time block codes. Coher-
ent ML detection of linear STBC requires the minimization of a quadratic function
subject to integer constraints. This is in general a hard problem (except for OS-
TBC, in which case the problem simplifies to a series of scalar detection problems),
and in Section 9.1.3 we discussed some suboptimal as well as (near-)optimal ap-
proaches. The associated analysis of error probabilities was given in Chapter 4.

Section 9.2 dealt with some problems relevant to concatenation of linear STBC
with an outer (for example, convolutional) error-correcting code. Expressions for
bit-metrics and likelihood ratios were given, and optimal information transfer was
briefly discussed.

In Sections 9.3–9.5 we treated the detection of linear STBC without channel
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Figure 9.8. BER for the trained OSTBC detection scheme and the scheme in [Liu et al.,
2001a].

knowledge at the receiver. First, in Section 9.3 we derived formulas for joint
channel estimation and symbol detection (or, effectively, detection via GLRT), for
the case of both white and colored noise. In Section 9.4 we discussed training-
based detection in which the channel is first estimated using a pilot block known
to the receiver, whereafter the coherent detector is used with the estimated channel
instead of the true one. We also studied optimality conditions for the training block
and found that in order to be optimal, a training block should be semi-unitary.
Finally, in Section 9.5 we reviewed blind and semi-blind methods. The blind
and semiblind methods presented can be seen as ways to approximate the joint
estimation and detection approach of Section 9.3; although purely blind detection
may have too poor a performance to be practical, semiblind methods typically
outperform a training-based approach at a modest additional computational cost.
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Under certain conditions (for example, if all code matrices are unitary), STBC
can be encoded differentially. The concept of differential encoding and detection
was shown to extend in a simple way from the case of SISO channels, and in
Section 9.6 we presented the relevant formulas for code design and demodula-
tion. Differentially encoded STBC can be demodulated noncoherently, without
any explicit training, by considering two consecutively received blocks; when do-
ing so, the first block acts implicitly as a training block. In general, the error
performance of differentially detected STBC is 3 dB worse than that of coher-
ently detected STBC. Also, differentially detected OSTBC typically outperforms
differential group codes; one reason for that being that the transmitted signals
associated with differentially encoded OSTBC do not have constant modulus re-
quirements and hence in contrast to group codes they contain information both in
the amplitude and the phase of the symbols.

In the chapter, we also developed detection algorithms for channels with fre-
quency offsets (see Section 9.7). The presented algorithms are based on estimating
the frequency offsets rather than designing codes that are immune to frequency
offsets or that can be decoded in a double-differential manner.

We have omitted a discussion of decision-feedback type equalizers for
frequency-selective channels. Such a discussion can be found, for example, in
[Al-Dhahir and Sayed, 2000].

In a way, the results in this chapter complement those in Chapter 4, which ex-
clusively focused on error probabilities, given that ML decoding can be performed.
The present chapter dealt with the detection of linear STBC for both frequency
flat channels (see Chapter 7) and for frequency-selective channels (see Chapter 8).

9.9 Problems

1. Prove (9.1.18) and (9.1.19) by a direct calculation.

2. Show (9.6.32) and (9.6.33).

3. Prove (9.1.38). Also, calculate an explicit expression for (9.1.39). Are these
two expressions equal in general?

4. Discuss the validity of the interference model in Section 9.1.2. Can you give
an example of interference that would be accurately described by this model?
Would co-channel interference generated by another OSTBC user be described
by the model?

5. Consider the channel model in Section 9.7.1. Assume that {ωk,l} and {hk,l}
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are known. Modify the coherent detector in Section 9.1 (for general linear
STBC), and that in Section 7.4.2 (for OSTBC) to this situation.

6. Derive (9.7.4).

7. Consider the model

Y = HX + E (9.9.1)

Assume that H is a random matrix whose elements are Gaussian and inde-
pendent with mean zero and variance ρ2. Also, let E be white Gaussian noise
with zero mean and variance σ2, and suppose that XXH = αI for some
constant α.

(a) Formulate the likelihood function associated with optimal detection un-
der the previous assumptions. Prove that for known ρ2 and σ2, the ML
rule for symbol detection takes on the same form as for the case when
H is treated as an unknown deterministic matrix (see (9.3.3)).

(b) Try to concentrate (minimize) the likelihood function jointly with respect
to ρ2 and σ2. Discuss the result (see also [Larsson et al., 2002b]).

8. Study a system with nt = 2 transmit antennas and a frequency flat propaga-
tion channel. Suppose that instead of using the differential OSTBC scheme in
Section 9.6 (which for nt = 2 is based on Alamouti matrices), we first encode
two streams of symbols s1(t), s2(t) differentially:

x1(t) = x1(t − 1) · s1(t)
x2(t) = x2(t − 1) · s2(t)

(9.9.2)

and then use {x1(t), x2(t)} to form Alamouti matrices:

X(t − 1) =
[
x1(t − 1) x∗

2(t − 1)
x2(t − 1) −x∗

1(t − 1)

]

X(t) =
[
x1(t) x∗

2(t)
x2(t) −x∗

1(t)

]
=
[
x1(t − 1)s1(t) x∗

2(t − 1)s∗2(t)
x2(t − 1)s2(t) −x∗

1(t − 1)s∗1(t)

] (9.9.3)

(a) Write down an expression for the received data, given two consecutively
transmitted code matrices X(t − 1),X(t).

(b) Write down the ML criterion for detection of s1(t), s2(t), given the re-
ceived matrices at time t and t − 1.

(c) Does the ML criterion have a unique minimum with respect to
s1(t), s2(t)? Can the system work?
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9. Prove (9.3.20) in a “calculus-like” way, by taking derivatives of the likelihood
function with respect to the elements in Λ and setting them to zero.

10. Propose an extension of the detection methods for spatially colored noise
(see Sections 9.1.2 and 9.3.2), which is able to take into account the temporal
correlation of the noise and interference as well. Discuss cases when this could
be important in practice.

11. Devise an extension of the algorithms in Section 9.5 applicable to ST-OFDM
by formulating a likelihood function for joint time-domain channel estimation
and detection of the symbols on all subcarriers. Discuss some advantages and
disadvantages of the so-obtained method.

12. Prove (9.2.5) and (9.2.6).

13. Study a system with one transmit antenna and two receive antennas, where
the received data is a vector of dimension 2× 1 given by:

y = hs + e (9.9.4)

Here s is the transmitted symbol, h is a channel vector of dimension 2 × 1,
and e is noise.

Suppose that h is known to the receiver and that we want to determine s
given y. Assume that

e ∼ NC(0,Λ) (9.9.5)

where Λ is a covariance matrix that is known to the receiver. Then we know
from Section 9.1.2 that ML detection amounts to minimizing:

∥∥
∥Λ−1/2(y − hs)

∥∥
∥
2
= (y − hs)HΛ−1(y − hs) (9.9.6)

with respect to s.

In this problem we study the case when Λ has the following form:

Λ = λλH + σ2I (9.9.7)

where λ is some vector of dimension 2 × 1 and σ2 is a very small number;
hence Λ is a nearly singular matrix. Such a covariance matrix can occur, for
example, in situations with very strong interference (see Chapter 11).
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(a) Apply the matrix inversion lemma (see Exercise A.34 on page 246) to
the matrix σ2Λ−1 and simplify the so-obtained expression.

(b) Let λ⊥ be a vector of unit norm that is orthogonal to λ. Explain how
σ2Λ−1 can be expressed in terms of λ⊥ when σ2 → 0.

(c) Use the result of (b) to determine a simple expression for the maximum-
likelihood detector that is valid approximately in the asymptotic case
when σ2 → 0. Simplify your result and express it using λ⊥.

14. Consider a system using linear STBC on a frequency-flat channel, and assume
that the receiver knows the channel. Determine the pairwise error probability
when a zero-forcing detector is used at the receiver.

Hint: Some ideas from Theorem 4.2 (see page 45) and its proof may be useful.

15. Formulate a criterion for the optimality of the training sequence in a ST-
OFDM system and try to find a sequence that satisfies this criterion.

Hint: Theorem 9.1 (see page 176) may be useful.



Chapter 10

SPACE-TIME CODING FOR

INFORMED TRANSMITTERS

All the discussion so far in this book (with the exception of Sections 3.3 and 6.1)
has focused on the case when the channel is unknown to the transmitter. In this
chapter, we will briefly study how partial channel knowledge at the transmitter can
be used to improve the system performance. In particular we will study linearly
precoded STBC.

10.1 Introduction

If the transmitter knows the channel, then it is optimal from an error probability
point of view to use what we referred to in Section 6.1 as beamforming. In the case
of one receive antenna (nr = 1), beamforming amounts to transmitting a symbol
weighted by the conjugate transpose of the channel, h∗ (for nr = 1, H becomes a
row vector hT ). Although doing so might lack the interpretation of beamforming
in a strict physical sense (depending on the antenna configuration), it shares the
main signal processing attributes thereof.

For a given transmit power, the performance obtained via transmit diversity
using STBC is in general inferior to that of beamforming, or receive diversity,
by a factor that is sometimes called the “array gain.” Loosely speaking, this is
so since space-time coding methods spread power uniformly in all directions in
space, while beamforming uses information about the channel to steer energy in
the particular direction of the receiver. The performance gap between space-time
coding and transmit beamforming can be significant. For instance, it is 3 dB for
a (nt = 2, nr = 1) system using the Alamouti code (see Section 6.3.1).

A feedback of partial (or full) channel state information from the receiver to the
transmitter may be used to close the performance gap between STBC and beam-
forming. This fact has been exploited by various researchers, and a host of feedback

212
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techniques have recently appeared in the literature (see, e.g., [Jöngren et al.,
2002], [Mukkavilli et al., 2001], [Visotsky and Madhow, 2001], [Narula
et al., 1998], [Sampath and Paulraj, 2002], [Bhashyam et al., 2002],
[Moustakas and Simon, 2002], [Simon and Moustakas, 2002], [Jafar
et al., 2001]). In this chapter, we look at the situation of a (partly) known
channel at the transmitter from a general perspective.

10.2 Information Theoretical Considerations

Let H be the channel gain matrix corresponding to a frequency independent
MIMO channel as in Section 2.1, and consider a stream of transmitted zero-mean
vectors {x(n)}, each of length nt. Let

P = E
[
x(n)xH(n)

]
(10.2.1)

be the covariance matrix of these symbol vectors. Then the bandwidth-normalized
information-theoretic channel capacity is given by (cf. Theorem 3.2 (see page 25)):

C(H) = log2
∣
∣
∣I +

HPHH

σ2

∣
∣
∣ (10.2.2)

where σ2 is the variance of the noise that affects each receive antenna element.
We know from Theorem 3.4 (see page 29) that the transmit correlation matrix
P that maximizes the average capacity EH[C(H)] with respect to P under the
power constraint Tr {P } ≤ P , if H is a Gaussian random matrix as discussed in
Chapter 2, is given by:

P =
P

nt
· I (10.2.3)

Note that if we use orthogonal STBC, we transmit matrices that are propor-
tional to a unitary matrix (cf. (7.4.1)) and hence the associated transmit correla-
tion matrix is given by (10.2.3), provided that the transmitted data is normalized
such that the transmission power is equal to P . Therefore OSTBC satisfies the
condition that the transmit correlation matrix should be proportional to a unitary
matrix (which is the choice that maximizes the mutual information). However,
this condition is not sufficient for a transmission scheme to achieve the channel
capacity.

If the channel is known to the transmitter, there are in principle two different
approaches. One possibility is to use beamforming (see Section 6.1) to minimize
the error probability for a fixed stream of (scalar) complex symbols to be trans-
mitted. Alternatively, we can use coding over space and time with a transmit
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correlation matrix P adapted such that C(H) is maximized (for the channel H
under consideration). We recall from Theorem 3.3 (see page 27) that in such a case
the available transmit power should be distributed on the dominant eigenvectors
of the MIMO channel. Not all these eigenvectors are used; depending on the SNR,
between one and all of the eigen-modes of the channel are exploited. By applying
Theorem 3.3 we can easily compute, for a given H , the transmit correlation matrix
P that maximizes the mutual information between the transmitter and receiver.

10.3 STBC with Linear Precoding

Suppose that a scheme is employed where the transmitter pre-multiplies the STBC
matrix X with a weighting matrix W taken from a finite matrix constellation
Ω = {W 1, . . . ,WK}; taking K < ∞ appears to be practical since feedback in real
systems will always be of a quantized nature. Doing so we obtain the following
transmission model:

Y = HWX + E (10.3.1)

The precoding matrix W is effectively absorbed into the channel, and the matrix
X can be viewed as if it “propagates” over an effective channel HW . For that
reason, from a receiver point of view, the system is equivalent to an unweighted
system. It is not necessary that the matrices {W k} are square. For instance, an
important special case of linear precoding is antenna selection, in which case W
simply contains selected columns of the identity matrix. Antenna selection has
been studied in a variety of papers, including [Sandhu et al., 2000], [Heath
et al., 2001b], [Gorokhov, 2002], [Molisch et al., 2001], [Gore and
Paulraj, 2002].

Example 10.1: Linear precoding for OSTBC to maximize the mutual information.
If X is an OSTBC matrix, the transmit correlation matrix associated with (10.3.1)
is (cf. Theorem 7.1; see page 102), if E[|sn|2] = 1:

P =
P

nt
· WWH (10.3.2)

The matrix W can be chosen to maximize the mutual information between the
transmitter and the receiver simply by applying Theorem 3.3 to maximize

∣
∣∣I +

P

ntσ2
WWHHHH

∣
∣∣ (10.3.3)

subject to a constraint of the form Tr
{
WWH

} ≤ 1. Doing so gives an expression
for WWH , which determines the optimal precoding matrix W to within a unitary
similarity transformation.
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Note that if H is known, true beamforming (see Section 6.1) could be used in
lieu of linear precoding as in (10.3.1). However, in particular in the presence of
feedback errors, the combination of space-time coding and linear precoding appears
to be a good way of guaranteeing robustness of the system (see Section 10.3.3 for an
illustration of this). Also, instead of using the mutual information as an optimality
criterion, we could also attempt to find W by minimizing the probability of a
detection error. This will be discussed in Section 10.3.2 (for the more general case
when only the statistics of H are known).

10.3.1 Quantized Feedback and Diversity

An important question is under what conditions a system with quantized feedback
(K < ∞) achieves the same order of diversity as without feedback (i.e., when
W = I). The following result (which is due to [Larsson et al., 2002a]) provides
a sufficient condition for this to happen.

Theorem 10.1: Quantized Feedback (K < ∞) and Diversity.
Suppose that Xk − Xn has full rank for all pairs of matrices Xk �= Xn. If all
matrices {W k} have rank nt, the system achieves the same diversity order (nrnt)
as if W = I was always chosen, regardless of the feedback rule.

Proof: Suppose for simplicity that the elements of H are independent and complex
Gaussian with variance ρ2 (we leave the extension to the general case as an exercise
for the reader). Since W depends on H via the feedback rule, the statistical
distribution of WH in general is not Gaussian and hence the result does not
follow from the analysis in Chapter 4. Instead, to prove the theorem, we proceed
as follows.

First note that the behavior of the feedback rule, including any quantization
effects or transmission errors associated with the feedback link, is captured by the
set of conditional probabilities {P (W k|H)}. The probability of wrongly detecting
a codeword X in lieu of a transmitted codeword X0, for a given H , can be upper
bounded by the Chernoff bound and Theorem 4.2 (see page 45):

P (X0 → X|H ,W ) ≤ exp
(
− 1

4σ2
‖HW (X0 − X)‖2

)
(10.3.4)

To establish the diversity order, we must average (10.3.4) with respect to H and
W . We have that (note that W depends on H):

P (X0 → X|H) =
K∑

k=1

P (X0 → X|H ,W k)P (W k|H) (10.3.5)
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Averaging (10.3.5) over H using

p(H) =
1

πnrntρ2nrnt
exp

(
− 1

ρ2
‖H‖2

)
(10.3.6)

along with (10.3.4) and the fact that P (W k|H) ≤ 1 gives

P (X0 → X) =
K∑

k=1

∫
dH P (X0 → X|H ,W k)P (W k|H)p(H)

≤ (πρ2)−nrnt

∫
dH

K∑

k=1

exp
(
− 1

4σ2
‖HW k(X0 − X)‖2 − 1

ρ2
‖H‖2

)

=
K∑

k=1

∣
∣∣

ρ2

4σ2
W k(X0 − X)(X0 − X)HWH

k + I
∣
∣∣
−nr

≤
K∑

k=1

|W k(X0 − X)(X0 − X)HWH
k |−nr

( ρ2

4σ2
)−nrnt

(10.3.7)

Hence the error rate decays as σ2nrnt which proves the claim about diversity.

Although Theorem 10.1 does not fully answer the question about choosing an
appropriate feedback rule, the result is encouraging as it does guarantee that for
quite general feedback weights in Ω, maximal diversity is achieved no matter how
“poor” the quality of the feedback is. Note also that the proof of Theorem 10.1
can be extended (under certain circumstances) to the case when Ω = {W k} is an
infinite (possibly uncountable) set, although doing so may be of less interest since
in practice the feedback information will likely have a quantized nature.

10.3.2 Linear Precoding for Known Fading Statistics

Recall that space-time block coding was derived with the sole purpose of being
able to achieve transmit diversity in the case that the transmitter does not know
the channel. Hence, if H is completely known at the transmitter, there is not
much reason to use space-time coding techniques at all since in that case we can
optimize the transmitted matrix WX directly by using an optimal beamformer
as in Section 6.1 (see, e.g., [Sampath, 2001] for further developments along these
lines). Nevertheless, when H is partially known, we can use space-time coding
and optimize only the W part of WX according to certain criteria.

In this subsection we assume that the channel is unknown to the transmit-
ter, but that the covariance matrix associated with the fading process (see Sec-
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tion 2.1.2), viz.,
R = E[hhH ] = RT

t ⊗ Rr (10.3.8)

is known (here h = vec(H)). In other words, we assume that the statistics of the
fading are known.

Maximizing the Mutual Information

Suppose that Rr = I but that Rt is a general nonsingular known matrix. Then
we can maximize the average mutual information between the transmitter and the
receiver with respect to W in (10.3.1) (or P in (10.3.2)) simply by observing that
in this case, H = HwR

1/2
t where Hw is a matrix with i.i.d. Gaussian elements.

Consequently, we need to maximize

EH[C(H)] = EH

[
log

∣∣
∣I +

HWWHHH

ntσ2
P

∣∣
∣
]

= EH

[
log

∣
∣∣I +

HwR
1/2
t WWHR

1/2
t HH

w

ntσ2
P

∣
∣∣
] (10.3.9)

which is maximized if WWH = R−1
t (cf. Theorem 3.4 (see page 29)). The choice

of WWH = R−1
t can be interpreted as a pre-whitening of the channel.

Minimizing the Error Probability

A different approach to the optimization of W is to minimize an upper bound on
the average probability of a detection error. This procedure, which was proposed in
[Sampath and Paulraj, 2002], works even in the case when Rt is rank deficient,
and Rr is a general positive semi-definite matrix. Moreover, interestingly enough,
even though this approach does not directly relate to the information theoretical
channel capacity approach, it leads to an optimization problem that can be solved
using the water-filling result in Theorem 3.3 (see page 27).

If X0 is transmitted, then the average (over the channel) probability that an
incorrect codeword X is decided in lieu of X0 can be upper bounded by using
Theorem 4.2 (see page 45):

EH[P (X0 → X)]

≤
∣
∣∣I +

1
4σ2

((X0 − X)TW T ⊗ I)(RT
t ⊗ Rr)(W ∗(X0 − X)∗ ⊗ I)

∣
∣∣
−nr

=
∣∣
∣I +

1
4σ2

(
(X0 − X)TW TRT

t W ∗(X0 − X)∗
) ⊗ Rr

∣∣
∣
−nr

(10.3.10)
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Application of the Schur complement formula [Horn and Johnson, 1985,
Th. 7.7.6] shows that the determinant of a positive semi-definite block matrix
is less than the product of the determinants of its diagonal blocks (if the block
size is equal to one, this relation is called the Hadamard inequality [Horn and
Johnson, 1985, Th. 7.8.1]). Hence, there is a constant c (that depends on Rr)
such that

EH[P (X0 → X)] ≤ c ·
∣∣
∣I +

1
4σ2

(X0 − X)(X0 − X)H · WHRtW
∣∣
∣
−nr

(10.3.11)

This expression can be minimized (subject to a power constraint) by using the
same tools as discussed earlier in this chapter.

Example 10.2: Linear precoding for OSTBC.
For OSTBC, (X0−X)(X0−X)H is proportional to the identity matrix. Hence,
if E[|sn|2] = 1, the W that minimizes the above bound (10.3.11) is given by:

min
W

∣∣
∣I +

ns

4σ2
WHRtW

∣∣
∣ (10.3.12)

which is easily found by using Theorem 3.3 (see page 27).

10.3.3 OSTBC with One-Bit Feedback for nt = 2

An extremely simple scheme which utilizes diagonal weighting matrices W to-
gether with orthogonal STBC was suggested in [Ganesan et al., 2002]. For the
case of nt = 2 transmit antennas and nr = 1 receive antenna, the scheme assumes
that a feedback consisting of one bit is present, and that this information bit is
used to choose one of the following two weighting matrices:

W 1 =
[|a|2 0
0 1− |a|2

]1/2
, W 2 =

[
1− |a|2 0

0 |a|2
]1/2

(10.3.13)

for some constant a that satisfies |a| ≤ 1.
Let h1 and h2 be the two elements of H = [h1 h2] � hT . Common sense

suggests, and it is easily proved analytically, that provided that there is no error
involved in the transmission of the feedback information the best feedback strategy,
from an error probability point of view, is to use W 1 if |h1| > |h2| and W 2

otherwise, where W 1 and W 2 are given by (10.3.13) with |a|2 = 1. Apparently,
since doing so amounts to using only one of the two transmit antennas at a given
time, no OSTBC would be necessary. However, if errors are present in the feedback



Section 10.3. STBC with Linear Precoding 219

information, a value |a|2 �= 1 can be used to obtain a robust weighted transmission
scheme, and moreover the use of OSTBC becomes necessary, as explained below.

We can quantify the performance of the above scheme analytically. Let Pc be
the probability that the feedback bit is correct. For a given h, the probability of
an error can be bounded by:

P (X0 → X|H ,W k) ≤ exp
(
− γ2

2σ2
‖HW k‖2

)
(10.3.14)

where γ2 is a constant that depends on the constellation. Let hmax and hmin denote
the elements of h with the largest and smallest magnitude, respectively. Then the
norm of the effective channel becomes, for the case that the feedback bit is correct
and incorrect, respectively:

‖hTW ‖2
∣
∣∣
correct

= ‖[hmax hmin]W 1‖2 =|a|2|hmax|2 + (1− |a|2)|hmin|2

‖hTW ‖2
∣
∣∣
wrong

= ‖[hmax hmin]W 2‖2 =|a|2|hmin|2 + (1− |a|2)|hmax|2
(10.3.15)

The associated error probability, for a given h, is upper bounded by the Chernoff
bound (cf. (10.3.14)):

P (X0 → X|h) ≤Pc · exp
(
− γ2

2σ2
(|a|2|hmax|2 + (1− |a|2)|hmin|2

))

+ (1− Pc) exp
(
− γ2

2σ2
(|a|2|hmin|2 + (1− |a|2)|hmax|2

))

(10.3.16)

By using order statistics [Papoulis, 2002, Sec. 6.2] it can be shown that the
joint p.d.f. of (|hmin|2, |hmax|2) is given by

p{|hmin|2,|hmax|2}(x, y) =
2
ρ4

exp
(
− x + y

ρ2

)
(10.3.17)



220 Space-Time Coding for Informed Transmitters Chapter 10

for x > y (and zero otherwise). Averaging (10.3.16) over (|hmin|2, |hmax|2) gives:

Eh[P (X0 → X)]

≤ 2Pc

ρ4

∫ ∞

0

∫ ∞

y
dxdy exp

(
− γ2

2σ2
(|a|2x + (1− |a|2)y) − 1

ρ2
(x + y)

)

+
2(1 − Pc)

ρ4

∫ ∞

0

∫ ∞

y
dxdy exp

(
− γ2

2σ2
(
(1− |a|2)x + |a|2y) − 1

ρ2
(x + y)

)

=
2

φ2 + 2

( Pc

φ2|a|2 + 1
+

1− Pc

φ2(1− |a|2) + 1

)

≤ 2
(φ2)2

·
( Pc

|a|2 +
1− Pc

1− |a|2
)

(10.3.18)

where the last inequality becomes tight for large SNR=φ2 = γ2/σ2. Equation
(10.3.18) proves, in particular, that a diversity of order 2 is achieved regardless of
Pc as long as 0 �= |a|2 �= 1, which reinforces the conclusion of Theorem 10.1. In
addition, the bound (10.3.18) may be useful for optimizing the system performance
(see [Ganesan et al., 2002], [Larsson et al., 2002a]).

In Figure 10.1 (see [Ganesan et al., 2002]), the performance of the OS-
TBC scheme with feedback was compared to that of an OSTBC scheme without
feedback (through Monte-Carlo simulation). The elements of H are independent
complex Gaussian random variables. The receiver was assumed to have perfect
channel knowledge. In the case of feedback errors it was assumed that the receiver
correctly identifies the weighting matrix used by the transmitter. A system with
2 transmit antennas and 1 receive antenna was considered and the Alamouti code
(see Section 6.3.1) was used, with QPSK symbols. This code has a spectral effi-
ciency of 2 bits/sec/Hz. The SNR was varied between 4 dB and 20 dB in steps of
2 dB and the BER was measured. From Figure 10.1 it is clear that in the absence
of any feedback errors, the optimal diagonal weighting improves the performance
by about 1.5 dB.

10.4 Summary and Discussion

Feedback schemes can be seen as an advanced form of power control, and they are
likely to find their way into future MIMO systems. The wideband CDMA standard
already incorporates feedback in a simple form via an option called “closed-loop
transmit diversity” [Derryberry et al., 2002]. While the currently standard-
ized feedback schemes are fairly simple, by increasing the amount of information
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Figure 10.1. Comparison of performance for an OSTBC scheme without and with feedback.
The system has two transmit antennas and one receive antenna and the spectral efficiency is 2
bits/second/Hz. The error tolerant weighting scheme was optimized for a feedback error of 5%
and an SNR of 20 dB.

used at the transmitter it is possible to get closer and closer to the performance
of beamforming (see Section 6.1).

This chapter has presented some fundamental principles for the design of feed-
back schemes. We started in Sections 10.1 and 10.2 with a general discussion from
an information theoretic point of view. In Section 10.3 we introduced linearly
precoded STBC. The main idea is that the transmitted STBC matrix X can be
pre-multiplied (or precoded) by a weight matrix W before transmission, and that
W can be optimized based on the (typically partial) channel knowledge available.
We first proved a robustness result on the choice of W in the case of inaccurate
or quantized feedback. Next we discussed various strategies for optimizing W , for
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example, via information-theoretic criteria or by minimizing a bound on the error
probability. The concepts were illustrated by a feedback scheme that makes use
of only one feedback bit per block, and that achieves maximal diversity regardless
of the probability of error for the feedback bit.

As indicated above, the weight matrix W used for linear precoding can be op-
timized either by minimizing the probability of a detection error, or by maximizing
the mutual information between the transmitter and the receiver. Although the
former approach minimizes the uncoded error rate (i.e., the error rate, which does
not take the effect of any outer channel codes into account), the second approach
may be more basic as it allows for an optimization of an outer code to maximize
the error-free throughput.

10.5 Problems

1. Discuss the feasibility of channel feedback in the context of some contemporary
cellular and wireless local area network standards.

2. Plot the asymptotic error bound (10.3.18) as a function of |a|2 for some dif-
ferent values of Pc. Discuss the result.

3. Study the proof of Theorem 10.1. Show that WH does not have a Gaussian
distribution.

4. Prove (10.3.7).

5. Extend Theorem 10.1 to channels H with a general covariance structure.



Chapter 11

SPACE-TIME CODING IN A

MULTIUSER ENVIRONMENT

This short chapter is aimed at highlighting some issues related to the use of space-
time coding in a multiuser environment. We will see that in general, the use
of a space-time code changes the statistical properties of the transmitted signal
compared with conventional transmission. We will also describe some simple tech-
niques for multiuser interference suppression in a system that uses orthogonal
STBC.

11.1 Introduction

Since the radio spectrum is a finite resource, the radio frequencies will always be
shared. For this reason, all users in a system will suffer from co-channel interfer-
ence, that is, disturbing radio signals from other users who use the same carrier
frequency. The capacity of a system is related to how often, or how densely, the
carrier frequencies are reused in the system. The more densely the frequencies are
used, the higher the system capacity, but also the higher the level of co-channel
interference. Therefore a signal processing algorithm that can suppress co-channel
interference at the receiver, or maintain a functional communication link at a
higher interference level, can also increase the system capacity. In a cellular sys-
tem, the sharing of frequencies is usually coordinated by the network, whereas for
some indoor local area networks, and so-called ad-hoc networks, it may be harder
to assign radio resources in a coordinated manner; consequently the problem of
mitigating co-channel interference may be even more important for such networks.

At the receiver, the co-channel interference can be mitigated in more than one
way. Usually, a key element for suppressing co-channel interference is extra receive
antennas. Hence, extra receive antennas can be used both for the purpose of coun-
teracting fading (as described in the previous chapters), and to reduce the effect

223



224 Space-Time Coding in a Multiuser Environment Chapter 11

of co-channel interference. One approach to interference suppression is to try to
decode the transmitted data corresponding to all co-channel users. This is usually
referred to as multiuser detection (see, e.g., [Verdú, 1998] for a good survey of
multiuser detection methods), and it is particularly important in the case when
two users intentionally share one carrier frequency. Another approach to reducing
co-channel interference is to use statistical modeling to suppress the interference.
Since the co-channel interference consists of information-carrying signals, it has
different statistical properties from those of the thermal receiver noise; moreover
this interference may come from a particular direction in space. These properties
of the co-channel interference can be exploited in a signal processing algorithm,
and statistical interference suppression techniques have been quite successful for
mitigation of interference in second generation cellular systems [Karlsson and
Heineg̊ard, 1996], [Dam et al., 1999]. Also note that although statistical
interference models often do not make full use of the structure present in the co-
channel signals, they have the important advantage of being able to model radio
interference that originates from other external sources than co-channel users; for
example, it is known that communication systems operating in the frequency band
around 2.45 GHz can suffer severely from interference from a regular microwave
oven.

11.2 Statistical Properties of Multiuser Interference

We discussed in Section 9.1.2 a simple algorithm for interference suppression which
assumes that the sum of thermal noise and interference is temporally white but
spatially colored. This assumption may approximate certain types of interference
to a satisfactory degree, but in general it is not an accurate description of the
interference generated by a competing user. One simple reason for this is that
space-time coding in general introduces a temporal correlation (see below).

For a system that uses linear space-time block coding, we can study the sta-
tistical properties of the generated interference in the following way. Let s be an
ns-vector of complex symbols transmitted by an interferer and let

s′ =
[
s̄
s̃

]
(11.2.1)

Assume that the transmitted (interfering) symbols are statistically white, i.e., that

E
[
s′s′T

]
=

ρ2

2
· I (11.2.2)
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(which gives a power of ρ2 for the elements of s). For linear STBC, the data matrix
transmitted by the interferer is of dimension nt × N and can be written:

X =
ns∑

n=1

(s̄nAn + is̃nBn) (11.2.3)

The part of the received data that is due to co-channel interference and thermal
noise can be written:

Y = HX + E (11.2.4)

where all quantities were defined previously in the text. The average spatial col-
oration of the interference generated by this system is essentially captured in the
following covariance matrices (for a given H):

E
[
Y Y H

]
= HE

[
XXH

]
HH + N · σ2I

E
[
Y Y T

]
= HE

[
XXT

]
HT

(11.2.5)

Of course, the result can be extended to more than one interferer.

Example 11.1: Statistical properties of “conventional” interference.
Consider a system with nt = 1 transmit antenna and nr ≥ 1 receive antennas. If
we transmit a circularly symmetric white stream of symbols {sn} with variance
ρ2, the received signal has the following statistical properties:

E
[
Y Y H

]
= ρ2 · hhH + N · σ2I

E
[
Y Y T

]
= 0

(11.2.6)

For high SNR, the first matrix in (11.2.6) has a low-rank structure (its effective
rank equals one). This is the reason why the interference suppression methods
such as that in Section 9.1.2 work.

Example 11.2: Statistical properties of OSTBC interference.
For OSTBC, XXH = ‖s‖2 · I by Theorem 7.1 (see page 102) and consequently

E
[
Y Y H

]
= E

[
‖s‖2

]
· HHH + N · σ2I

= nsρ
2 · HHH +N · σ2I

(11.2.7)
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Furthermore, since {An,Bn} are real-valued for OSTBC,

E
[
Y Y T

]
= HE

[
ns∑

n=1

ns∑

k=1

(
s̄ns̄kAnAT

k − s̃ns̃kBnBT
k

+ is̄ns̃kAnBT
k + is̃ns̄kBnAT

k

)
]

HT

= 0

(11.2.8)

under the assumption (11.2.2). Hence, unlike for conventional transmission, the
spatial covariance of the interference produced by an OSTBC user does not have
a low-rank structure. We can therefore expect an algorithm such as that in Sec-
tion 9.1.2 to be less effective for the suppression of OSTBC multiuser interference.

The above formulas provide a measure of the spatial color of the signals gener-
ated by an interferer, but they do not describe the temporal coloration introduced
by the coding. A more accurate description of the interference generated by linear
STBC can be obtained as follows. By vectorizing the space-time received data we
get (see Section 7.1):

y′ = F ′s′ + e′ (11.2.9)

where

F �
[
vec(HA1) · · · vec(HAns) i vec(HB1) · · · i vec(HBns)

]
(11.2.10)

and

F ′ =
[
F̄

F̃

]
(11.2.11)

and where y′ and e′ are defined similarly to s′. Using the same assumptions as
before, we obtain the following covariance matrix that captures all spatial-temporal
second order properties of the vector y′:

E
[
y′y′T ]

=
ρ2

2

[
F̄ F̄

T
F̄ F̃

T

F̃ F̄
T

F̃ F̃
T

]

+
σ2

2
I (11.2.12)

In general, this matrix is not proportional to the identity matrix. In particular,
we leave to the reader the task to verify that for OSTBC the matrix in (11.2.12)
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is not proportional to the identity matrix. However, the analysis indicates that
space-time coded signals usually have a covariance structure that can be used by
an interference suppression algorithm that builds on (and extends) the ideas in
Section 9.1.2. This observation motivates a more detailed study of interference
cancellation for OSTBC.

11.3 OSTBC and Multiuser Interference

OSTBC has a structure that can enable co-channel interference suppression by rel-
atively simple means, provided that the receiver knows the channel corresponding
to all co-channel users.

11.3.1 The Algebraic Structure of OSTBC

Consider a system that uses the Alamouti space-time code. After appropriate
complex conjugation, the received data y can be written as (see (6.3.9)):

y = Fs + e (11.3.1)

where s = [s1 s2]T is a vector containing the two transmitted symbols, e = [e1 e2]T

is a noise vector and F is the following matrix:

F =
[

h1 h2
−h∗

2 h∗
1

]
(11.3.2)

Such matrices have an interesting property.

Theorem 11.1: Algebraic structure of OSTBC for nt = 2.
The set 2× 2 matrices with the structure (11.3.2) is closed under addition, multi-
plication, inversion and multiplication with a real-valued scalar.

Proof: This result can be verified by some straightforward algebra.

Theorem 11.1 can be verified by the direct multiplication of relevant matrices,
but we should also note that there are some more subtle connections between the
set of matrices with the structure (11.3.2) and the field of complex numbers as
well as the set of so-called quaternions. The properties of the complex number
system should be well-known to the reader, but the quaternions may not be so.
The quaternions were introduced by Hamilton in his study of the rotation of rigid
bodies, and they have also been used in the special theory of relativity. The set
of quaternions is an algebraic structure that is closed under multiplication and



228 Space-Time Coding in a Multiuser Environment Chapter 11

addition, and in which every nonzero element has an inverse. The quaternions
therefore have some similarities with the real and complex numbers; however, the
quaternions have four degrees of freedom compared to the complex numbers which
have two and real numbers which have one, and in contrast to the real and complex
numbers, the quaternions do not commute.

By using a matrix representation of complex numbers, it can be shown that
the set of real-valued matrices with the structure (11.3.2) is isomorphic to the
set of complex numbers. From this fact, the statement in Theorem 11.1 for real
h1,h2 follows directly. Moreover, it can be shown that the set of complex matrices
with the structure (11.3.2) is isomorphic to the set of quaternions. This has the
implication that the set of these OSTBC matrices is closed under multiplication,
addition and inversion, and from this fact the statement in Theorem 11.1 for
complex matrices of the form (11.3.2) follows.

11.3.2 Suppression of Multiuser Interference in an OSTBC System

To illustrate the usefulness of Theorem 11.1, we consider for simplicity a scenario
with two co-channel users A and B that are equipped with nt = 2 transmit anten-
nas each and that use the Alamouti code. We will also assume, for the simplicity
of the discussion, that the receiver has nr = 2 receive antennas. Let

α = [α1 α2]T

β = [β1 β2]T
(11.3.3)

be the symbol vectors corresponding to the users A and B and let

Xα =
[
α1 α∗

2

α2 −α∗
1

]

Xβ =
[
β1 β∗

2

β2 −β∗
1

] (11.3.4)

be the associated Alamouti matrices (cf. (6.3.1)). We use α and β in this sec-
tion instead of s as before to make the connection between the user A or B and
its associated symbols. Also, let {Ak,Bk} be the matrices with the following
structure: [

h1 h2
−h∗

2 h∗
1

]
(11.3.5)

(see (6.3.8)) corresponding to user A and B and receive antenna number k, re-
spectively. Furthermore, let yk be the vector that contains the output of the kth
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receive antenna during the two time intervals (after complex conjugation as in
Section 6.3.1). Then we can write:

[
y1
y2

]
=

[
A1 B1

A2 B2

] [
α
β

]
+

[
e1
e2

]
(11.3.6)

where {ek}, k = 1, 2 are noise vectors.
The matrices {Ak,Bk} have the structure discussed in Sections 6.3.1 and 11.3.1

and therefore they are proportional to unitary matrices:

AH
k Ak = ‖ak‖2I

BH
k Bk = ‖bk‖2I

(11.3.7)

where ak and bk are vectors that contain the channel gains associated with user
A and B, respectively. Moreover, by Theorem 11.1, the set of {Ak,Bk} is closed
under addition, multiplication and inversion.

Under the assumption that the elements of the noise vectors e1 and e2 in
(11.3.6) are independent Gaussian random variables (which amounts to assuming
that the receiver noise is spatially and temporally white), the ML metric for the
joint detection of α and β is given by:

∥
∥∥
∥∥

[
y1
y2

]
−

[
A1 B1

A2 B2

] [
α
β

] ∥
∥∥
∥∥

2

(11.3.8)

Let us assume that the receiver knows {Ak,Bk}; this channel state information
can be acquired at the receiver via training. Then the multiuser detection of α
and β (in a ML sense) amounts to minimizing (11.3.8) jointly with respect to α
and β. Note that if the matrix

[
A1 B1

A2 B2

]
(11.3.9)

had the properties of a complex orthogonal design (see Section 7.4), the detection of
α and β would decouple similarly to the detection of a single Alamouti-code user,
see Section 6.3.1; however, unfortunately this is not the case. Consequently, the
minimization of (11.3.8) may be a relatively computationally burdensome problem,
even though fast search algorithms such as sphere decoding (see Section 9.1.3) can
be used. Therefore, some suboptimal approaches have appeared in the literature.

For instance, [Naguib et al., 2000] (see also [Stamoulis et al., 2001])
observed that if we pre-multiply the received signals (11.3.6) with the following
space-time beamforming matrix:

[
I −B1BH

2
‖b2‖2

]
(11.3.10)
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we obtain a signal vector of length two that depends only on α and therefore is
free of co-channel interference from the user B:

y̌ =
[
I −B1BH

2
‖b2‖2

] [
y1
y2

]
= Dα +

(
e1 − B1B

H
2

‖b2‖2 e2

)
(11.3.11)

where

D = A1 − B1B
H
2 A2/‖b2‖2 (11.3.12)

Since the set of matrices {An,Bn} is closed under addition, multiplication and
inversion, the matrix D in (11.3.12) has the same structure as (11.3.5). Further-
more, the covariance matrix of the noise vector in (11.3.11) is readily checked to be
σ2(1+‖b1‖2)I, and thus the “beamformed” noise is still spatially white. Hence the
detection of α from y̌ in (11.3.11) is equivalent to the standard detection problem
for a single Alamouti code user discussed in Section 6.3.1. The detector based on
(11.3.11) is called a zero-forcing (ZF) detector in [Naguib et al., 2000]. The
same reference also proposes a related algorithm that minimizes a certain mean-
square error (MSE) criterion, a method that gives a slightly better performance
than the ZF algorithm but for conciseness we will not discuss it here.

From a ML point of view, the approach of [Naguib et al., 2000], [Stamoulis
et al., 2001] is not optimal. This can be intuitively understood as follows: after
we pre-multiplied the received data with the matrix

[
I −B1BH

2
‖b2‖2

]
(11.3.13)

the so-obtained beamformed data are no longer a sufficient statistic for detection.
In fact, the relationship between the previous technique of [Naguib et al., 2000],
[Stamoulis et al., 2001] and the exact ML detection is easy to establish analyt-
ically. After some straightforward algebra, it follows that (11.3.8) is proportional
to:

∥
∥∥
∥ý − Cα − ‖b1‖2 + ‖b2‖2

‖b2‖ β

∥
∥∥
∥

2

+ ‖y̌ − Dα‖2 (11.3.14)

where y̌ and D are defined in (11.3.11) and (11.3.12) above, and:

ý = (BH
1 y1 + BH

2 y2)/‖b2‖
C = (BH

1 A1 + BH
2 A2)/‖b2‖

(11.3.15)
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In a similar manner, it can be shown that the ML metric in (11.3.8) is also pro-
portional to:

∥
∥∥
∥ź − Fβ − ‖a1‖2 + ‖a2‖2

‖a2‖ α

∥
∥∥
∥

2

+ ‖ž − Gβ‖2 (11.3.16)

where

ź = (AH
1 y1 + AH

2 y2)/‖a2‖
ž = y1 − A1A

H
2 y2/‖a2‖2

F = (AH
1 B1 + AH

2 B2)/‖a2‖
G = B1 − A1A

H
2 B2/‖a2‖2

(11.3.17)

In the light of these calculations, we can see that the ZF algorithm in [Naguib
et al., 2000], [Stamoulis et al., 2001] obtains α by minimizing the second
term in (11.3.14), and similarly β by minimizing the second term in (11.3.16):

min
α∈S

‖y̌ − Dα‖2

min
β∈S

‖ž − Gβ‖2 (11.3.18)

The detection criteria in (11.3.18) can be viewed as rough approximations of the
ML criterion, obtained by neglecting a term that may be significant. This sug-
gests that the difference in BER performance between the ZF detection scheme
of [Naguib et al., 2000], [Stamoulis et al., 2001] (i.e., Equation (11.3.18))
and the optimum ML may not be marginal. In particular, it can be seen that
the spatial diversity gain achieved by the methods of [Naguib et al., 2000],
[Stamoulis et al., 2001] is not more than two; this should be contrasted with
the fact that a single Alamouti OSTBC user transmitting over a 2 × 2 channel
matrix achieves a spatial diversity gain of four. Also, the spatial diversity gain
associated with the joint ML detection of the two co-channel users A and B (i.e.,
minimization of (11.3.8)) is equal to four. To see this, note that the samples of
the (noise-free) received signal can be written as:

[
XT

α 0 XT
β 0

0 XT
α 0 XT

β

]
⎡

⎢
⎢
⎣

a1
a2
b1
b2

⎤

⎥
⎥
⎦ � Γh (11.3.19)

It holds that ΓΓH =
(‖α‖2+‖β‖2)I and consequently the rank of Γ is four for any

nonzero α or β. Hence, provided that h is Gaussian distributed with a positive
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definite covariance matrix, Theorem 4.2 (see page 45) is applicable and it shows
that the joint ML detection of the symbols corresponding to the two users gives a
diversity of order four.

To summarize, the techniques of [Naguib et al., 2000], [Stamoulis et al.,
2001] rely on an interesting algebraic property of OSTBC (for nt = 2) that we
derived in Section 11.3.1. However, these techniques trade off performance for
computational simplicity. We illustrate this fact in the following example.

Example 11.3: Multiuser Interference Suppression for OSTBC.
We consider a system with two co-channel (Alamouti code) users and assume
that the receiver as well as each user has two antennas. The channel gains are
independent circular Gaussian variables with variance ρ2. The two users transmit
QPSK symbols with unit power. The noise is spatially and temporally white
circular Gaussian with variance σ2 per antenna. We define the SNR as ρ2/σ2.

Figure 11.1 shows the estimated BER obtained by Monte-Carlo simulation
versus the SNR for the different methods discussed above. The curve “1 user, 1 Rx”
refers to the case of a single user with two transmit antennas and a receiver with
one antenna. The curve “2 users, ZF” corresponds to the ZF method in [Naguib
et al., 2000], [Stamoulis et al., 2001] (or equivalently, Equation (9.4.9)). The
curve “2 users, MMSE” corresponds to the MMSE method of [Naguib et al.,
2000], [Stamoulis et al., 2001] (not described in this section). The curve
“2 users, ML” corresponds to the exact ML solution given by the minimizer of
(11.3.8). Finally, the curve “1 user, 2 Rx” shows the BER in the case of a single
user with two transmit antennas and a receiver with two transmit antennas. Note
that the curves “1 user, 1 Rx” and “2 users, ZF” overlap.

Clearly, the gap between the performance of the exact ML multiuser detector
and the performance of the suboptimal approaches discussed above can be quite
significant.
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Figure 11.1. Results for Example 11.3 (multiuser detection for OSTBC).
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11.4 Summary and Discussion

The goal of this chapter has been to briefly illustrate some problems that appear
when multiple users share the same channel. We started in Sections 11.1 and 11.2
by discussing the statistical properties of the interference in a MIMO system. In
principle, co-channel interference in a MIMO system can be suppressed via mul-
tiuser detection methods, or via statistical interference suppression methods (such
as that described in Section 9.1.2). However, in general, co-channel interference
signals generated by a user in a MIMO system have a richer correlation struc-
ture than similar signals in a conventional SISO communication system have, and
therefore the problem of suppressing them at the receiver is somewhat different in
nature.

A suboptimal approach for interference suppression in a system using OSTBC
was reviewed in Section 11.3. This algorithm was based on suppression of the co-
channel signals via linear filtering of the received data, along with some algebraic
properties of the OSTBC matrices, which turned out to simplify the detection
problem. Although this approach is conceptually simple and computationally non-
intricate, we found that it implies a loss of diversity order compared to multiuser
detection via maximum-likelihood.

11.5 Problems

1. Prove Theorem 11.1.

2. Prove that (11.3.8) is proportional to (11.3.14) and (11.3.16).

3. Characterize the structure of the matrix in (11.2.12), both for OSTBC and
for linear STBC in general.

4. Extend the derivation in Section 11.3.2 to the case when the receiver has more
than two antennas.

5. Can the results in Section 11.3 be extended to the case of more than two
users?



Appendix A

SELECTED MATHEMATICAL

BACKGROUND MATERIAL

This appendix is intended to help the reader by summarizing some known formulas
and results from matrix algebra and probability theory. It is absolutely not a self-
contained treatment of linear algebra or probability theory, nor is it a replacement
for a systematic treatment or a course on these topics. However, it may be helpful
as a refresher for students who have not studied these subjects for some time.

All the results presented here are well-known and their proofs can be found
in many textbooks on linear algebra, probability theory and statistics. Since our
discussion is somewhat scattered, and since we believe that the proof of some of
the results can constitute appropriate problems for students when this book is
used in a classroom setting, we present most of the results in the form of exercises.

A.1 Complex Baseband Representation of Bandpass Signals

Most signals in a wireless communication system have a narrowband character,
and such narrowband (real-valued) signals can be represented with complex vari-
ables in a neat way. The general theory for doing so is treated in most digital
communication textbooks (see, e.g., [Proakis, 2001, Sec. 4.1]), but since the
complex baseband representation is a foundation for all signal models used in this
book we offer a brief treatment of the topic.

Let s(t) be a real-valued continuous-time signal that has a bandpass spectrum
centered around ωc = 2πfc and let

S(f) =
∫ ∞

−∞
s(t)e−i2πftdt (A.1.1)
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be its Fourier transform (or spectrum). Apparently,

S(−f) =
∫ ∞

−∞
s(t)ei2πftdt = S∗(f) (A.1.2)

Define the following spectrum, along with its time-domain signal:

S+(f) =

{
2S(f) f ≥ 0
0 otherwise

s+(t) =
∫ ∞

−∞
S+(f)ei2πftdf

(A.1.3)

The signal s+(t) is called the analytic signal and in general it is complex. By
definition, its spectrum S+(f) is zero for f ≤ 0 and narrowband around fc. We
can now define the following complex baseband signal sb(t) associated with s(t),
along with its spectrum Sb(f):

sb(t) = s+(t)e−i2πfct

Sb(f) = S+(f + fc)
(A.1.4)

Although it lacks a clear physical meaning, it turns out that the complex baseband
signal sb(t) is a mathematically convenient representation of s(t).

We have that

Re
{

sb(t)ei2πfct
}
= Re

{∫ ∞

−∞
S+(f)ei2πftdf

}

= 2Re
{∫ ∞

0
S(f)ei2πftdf

}

=
∫ ∞

0
S(f)ei2πftdf +

∫ ∞

0
S∗(f)e−i2πftdf

=
∫ ∞

−∞
S(f)ei2πftdf = s(t)

(A.1.5)

Hence, given the complex baseband signal sb(t) we can easily compute the cor-
responding narrowband signal s(t). Note, however, that for a given s(t), (A.1.5)
does not define sb(t) uniquely. For instance, the complex baseband signal

šb(t) = sb(t) + ie−i2πfct (A.1.6)

yields the same s(t) as does sb(t).
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The quantity |sb(t)| is sometimes called the envelope of s(t). Also, the signals

sI(t) = Re {sb(t)}
sQ(t) = Im {sb(t)}

(A.1.7)

are called the in-phase and quadrature components of s(t). We can see from (A.1.5)
that

s(t) = |sb(t)| · cos
(
2πfct + arg[sb(t)]

)
(A.1.8)

and hence a phase shift of the narrowband signal s(t) corresponds to a shift in the
complex angle of sb(t).

Suppose that a linear system has a transfer function H(f) that is narrowband
around the center frequency fc and that h(t) is the associated impulse response.
Assume that a narrowband (around fc) signal is applied at the input of this linear
system. Let

r(t) =
∫ ∞

−∞
s(T )h(t − T )dT (A.1.9)

Then it is possible to show (with obvious notation) that:

rb(t) =
1
2

∫ ∞

−∞
sb(T )hb(t − T )dT (A.1.10)

In other words, we can work with the complex baseband representations of both
the signal and the linear system. Much of the usefulness of the complex baseband
representation lies in this result.

A.2 Review of Some Concepts in Matrix Algebra

1. Trace of a matrix: The trace of a (square) matrix, Tr {X}, is the sum of the
diagonal elements of X.

2. Frobenius norm of a matrix: The Frobenius norm of an m × n matrix X is
defined as:

‖X‖2 =
m∑

s=1

n∑

t=1

|Xs,t|2 = Tr
{
XXH

}
= Tr

{
XHX

}
(A.2.1)

For vectors, the Frobenius norm becomes identical to the Euclidean vector
norm.



238 Selected Mathematical Background Material Appendix A

3. Determinant of a matrix: The determinant |X | of a (square) matrix X can
be defined as a linear combination of certain monoms involving different
elements of X . However, it can be shown that the determinant is also equal
to the product of the eigenvalues of X. For our purposes, this can be taken
as the definition of the determinant.

4. Rank of a matrix: The column rank of a matrix is the number of linearly
independent columns. The row rank of a matrix is the number of linearly
independent rows. It turns out that the column rank and the row rank are
always equal. Hence we often simply say the rank of a matrix.

5. Eigenvalue and eigenvector of a matrix: Let X be an arbitrary matrix. If the
vector u and scalar λ are such that Xu = λu, then u is called an eigenvector
of X, and the scalar λ is the corresponding eigenvalue.

6. Positive definite matrix: A matrix is positive definite if all its eigenvalues are
positive. It is non-negative definite, or positive semi-definite, if all eigenvalues
are non-negative.

7. Eigenvalue-decomposition: Suppose that X is a Hermitian matrix of dimen-
sion m×m, i.e., HH = H . Then there is an m×m diagonal matrix ∆ and
a unitary matrix T such that:

X = T∆TH (A.2.2)

The pair {T ,∆} is called the eigenvalue-decomposition of X. The diagonal
elements of ∆ contain the (real-valued) eigenvalues of X.

8. Singular value decomposition: Suppose that X is a general m × n matrix of
rank r. Then there is an r × r diagonal matrix ∆, with positive diagonal
elements, as well as two matrices V and U such that:

X =U∆V H

V HV =I

UHU =I

(A.2.3)

The triplet {U ,V ,∆} is called the singular value decomposition of X.

9. Vectorization of a matrix: Let A be an arbitrary m × n matrix. Then the
vector vec(A) is obtained by stacking the columns of A on top of each other:

vec(A) = [A1,1 A2,1 · · · Am,1 · · ·Am,n]T (A.2.4)
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10. Kronecker product: Let A be an arbitrary m × n matrix and let B be an
arbitrary m̄× n̄ matrix. Then the Kronecker product A⊗B is of dimension
mm̄ × nn̄ and is defined as:

A ⊗ B =

⎡

⎢
⎣

A1,1B · · · A1,nB
...

...
Am,1B · · · Am,nB

⎤

⎥
⎦ (A.2.5)

11. Projection Matrices: Let X be a matrix of dimension m × n, where m ≥ n.
If X has full column rank, the orthogonal projector onto the range space of
X is defined as follows:

ΠX = X(XHX)−1XH (A.2.6)

The projection matrix ΠX has the following properties:

ΠXΠX = ΠX

ΠXX = X
(A.2.7)

Also, the orthogonal projector onto the complement of the range space of X
is defined as:

Π⊥
X = I −ΠX (A.2.8)

12. Circulant Matrices: A right circulant matrix is a matrix obtained by stacking
cyclically right-shifted versions of a row vector on top of each other:

X =

⎡

⎢⎢
⎢⎢
⎢
⎣

x0 xN−1 · · · x2 x1
x1 x0 x3 x2
...

. . .
...

xN−2 xN−3 x0 xN−1
xN−1 xN−2 · · · x1 x0

⎤

⎥⎥
⎥⎥
⎥
⎦

(A.2.9)

A left circulant matrix is obtained in a similar way, by instead cyclically
shifting the row vector x leftwards. Circulant matrices have appealing prop-
erties. For instance, it can be shown that X in (A.2.9) enjoys the following
eigenvalue-decomposition:

X = T∆TH (A.2.10)
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where

∆ =

⎡

⎢
⎢⎢
⎢
⎣

δ0 0 · · · 0

0 δ1
. . .

...
...

. . . . . . 0
0 · · · 0 δN−1

⎤

⎥
⎥⎥
⎥
⎦

δn =
N−1∑

l=0

xle
−i2π ln

N

(A.2.11)

and T is the unitary matrix whose (k, l)th element is given by:

T k,l =
1√
N

exp
(
− i2π

(k − 1)(l − 1)
N

)
(A.2.12)

Similar results hold for left circulant matrices, and for block-circulant ma-
trices as well.

13. Isomorphism between complex-valued n-vectors and real-valued 2n-vectors:
Consider the matrix-vector product

y = Ax (A.2.13)

where A is a complex-valued matrix of dimension m × n, x is a complex-
valued vector of length n and y is a complex-valued vector of dimension m.
This product can be equivalently expressed as follows:

[
ȳ
ỹ

]
=

[
Ā −Ã

Ã Ā

][
x̄
x̃

]
(A.2.14)

where all involved matrices and vectors are real-valued. Let us introduce the
following notation

y′ =
[
ȳ
ỹ

]
, x′ =

[
x̄
x̃

]

A′ =
[
Ā −Ã

Ã Ā

] (A.2.15)

(the notation (·)′ is used in many places in this book). Then we can write
(A.2.14) as:

y′ = A′x′ (A.2.16)

The representation in (A.2.14) is an often useful manifestation of the iso-
morphism between complex numbers and real-valued matrices of dimension
2× 2.
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A.3 Selected Concepts from Probability Theory

1. Multivariate real-valued Gaussian random variables: A real-valued vector x of
length m is Gaussian with mean µ and covariance matrix Υ if its p.d.f. can
be written

p(x) = (2π)−m/2|Υ|−1/2 exp
(
− 1

2
(x − µ)TΥ−1(x − µ)

)
(A.3.1)

This means that
P (x ∈ Ω) =

∫

x∈Ω
p(x)dx (A.3.2)

Notationally we write:
x ∼ N(µ,Υ) (A.3.3)

2. Complex-valued Gaussian random vectors: A complex-valued vector x = x̄+ix̃
is Gaussian if the real and imaginary parts of all its elements are jointly
Gaussian:

[
x̄
x̃

]
∼ N(µ′,Υ′) (A.3.4)

for some vector µ′ and a positive definite matrix Υ′ of dimension 2m × 2m.

3. Circularly symmetric Gaussian random vectors: An important subclass of com-
plex Gaussian random vectors is that of circularly symmetric complex Gaus-
sian variables. A vector x = x̄ + ix̃ is circularly symmetric Gaussian if its
real and imaginary parts are jointly Gaussian with mean µ′ and covariance
matrix Υ′:

x′ =
[
x̄
x̃

]
∼ N(µ′,Υ′) (A.3.5)

and, in addition, Υ′ has the following structure:

Υ′ =
[
Υ1 Υ2
−Υ2 Υ1

]
(A.3.6)

(Note that ΥT
1 = Υ1 and ΥT

2 = −Υ2 by construction.)

Such a random vector x has the following properties:

E[x] � µ = µ̄ + iµ̃

E
[
(x − µ)(x − µ)H

]
� Υ = 2(Υ1 − iΥ2)

E
[
(x − µ)(x − µ)T

]
= 0

(A.3.7)
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and its p.d.f. can be written

p(x) = π−m|Υ|−1 exp
(
− (x − µ)HΥ−1(x − µ)

)
(A.3.8)

For short, we write
x ∼ NC(µ,Υ) (A.3.9)

to denote that x is a circularly symmetric Gaussian random vector.

4. The Q-function: Let x be a real-valued Gaussian random variable with zero
mean and unit variance. Then the integrated tail of the p.d.f. of x is often
denoted by the following function:

Q(t) � P (x ≥ t) =
1√
2π

∫ ∞

t
exp

(
− x2

2

)
dx (A.3.10)

5. Chernoff bound: The value of Q(t) in (A.3.10) can be upper-bounded by the
Chernoff bound [Proakis, 2001, Sec. 2.1.5]:

Q(t) ≤ exp
(
− t2

2

)
(A.3.11)

6. Rayleigh and Exponentially Distributed Variables: If x and y are independent
zero-mean real-valued Gaussian random variables with variance σ2/2, then
the following variable

z =
√

x2 + y2 (A.3.12)

has a Rayleigh distribution, and the variable z2 has an exponential distribu-
tion. The probability density functions (p.d.f.s) of z and z2 are:

pz(t) =
2t
σ2

· exp
(
− t2

σ2

)

pz2(t) =
1
σ2

· exp
(
− t

σ2

) (A.3.13)

A.4 Selected Problems

The following exercises contain useful formulas and results from matrix algebra and
probability theory. The level of difficulty of these problems is quite nonuniform:
some of them are very easy and some of them may require more effort. In the
following we assume that all matrices are of compatible dimensions.
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1. Let x be a scalar circular complex Gaussian random variable (as defined in
the above Section A.3). Prove that x̄ and x̃ must be independent and have
the same variance. Prove also that the converse is true, i.e. if x̄ and x̃ have
the previous properties, then x is a circular Gaussian random variable.

2. Give an example of a complex Gaussian random vector that is not circularly
symmetric. Also, conclude that the p.d.f. of a (zero-mean) complex Gaussian
vector x is not determined by its covariance matrix E

[
xxH

]
unless it is

circularly symmetric.

3. Let x be a scalar circularly symmetric Gaussian random variable with zero
mean and variance σ2. Prove that |x| and |x|2 are Rayleigh and exponentially
distributed, respectively.

4. Let n(t) be a real-valued stationary stochastic noise process that has a flat
spectral density over two narrow bands centered around ±fc. Suppose that
a complex baseband representation of this noise is defined in the same way
as in Section A.1. Prove that n̄b(t) and ñb(t) are uncorrelated and that they
have the same variance (hence the noise nb(t) is circularly symmetric).

Hint: Show first that

n(t) = Re
{

nb(t)ei2πfct
}
= n̄b(t) cos(2πfct)− ñb(t) sin(2πfct) (A.4.1)

and that

E
[|n(t)|2] =1

2

(
E

[
(n̄b(t))2

](
1 + cos(4πfct)

)

+E
[
(ñb(t))2

](
1− cos(4πfct)

)

+E
[
n̄b(t)ñb(t)

]
sin(4πfct)

)
(A.4.2)

and use the assumption on the stationarity of n(t).

5. Prove Equation (A.3.7).

6. Prove Equation (A.1.10).

7. Prove that Tr {XY } = Tr {Y X}.
8. What is the relation between the singular value decomposition of X and the

eigenvalue-decompositions of XHX and XXH , respectively?

9. Prove that ‖X‖2 = Tr
{
XHX

}
.
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10. Prove that Tr {X} is equal to the sum of the eigenvalues of X.

11. Explain how the singular value decomposition of a Hermitian matrix reduces
to the eigenvalue-decomposition of the same matrix.

12. Prove that vec(ABC) = (CT ⊗ A) vec(B)

13. Prove that Tr
{
AHB

}
= vecH(A) vec(B)

14. Prove that Tr {A ⊗ B} = Tr {A}Tr {B}
15. Prove that Tr {ABCD} = vecT

(
AT

)
(DT ⊗ B) vec(C)

16. Prove that (A ⊗ C)(B ⊗ D) = (AB ⊗ CD)

17. Prove that (A ⊗ B)−1 = (A−1 ⊗ B−1)

18. Prove that (A ⊗ B)H = (AH ⊗ BH)

19. Show that for square A and B of dimensions m × m and n × n, respectively,
it holds that:

|A ⊗ B| = |A|n · |B|m (A.4.3)

20. Suppose that ‖Ax‖2 = ‖x‖2 for all x. Show that A must be a unitary matrix.

21. Assume that X and Y are square matrices of dimension n×n and that both
of them have rank m. What can we say about

(a) the eigenvalues of XXH?

(b) the rank of XY ?

(c) the determinant |XY |?
Can we say anything about Tr {XY }?

22. Assume that X is skew-Hermitian: XH = −X, and let Y be a Hermitian
matrix. What can we say about Tr {XY }?

23. Let X be a positive definite matrix of dimension N × N . Prove that

|X| ≤
N∏

n=1

Xn,n (A.4.4)

(This inequality is called the Hadamard inequality.)
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24. Let B be a matrix with full column rank and let A be another given matrix.
Prove that

‖A − BX‖2 ≥ ‖(I − B(BHB)−1BH)A‖2 (A.4.5)

with equality if
X = (BHB)−1BHA (A.4.6)

Hint: show first that

‖A − BX‖2 =
∥
∥
∥ΠB(A − BX) + Π⊥

B(A − BX)
∥
∥
∥
2

=‖ΠB(A − BX)‖2 +
∥∥
∥Π⊥

B(A − BX)
∥∥
∥
2

(A.4.7)

25. Prove that |I + AB| = |I + BA|.
26. Let X be a positive definite matrix and let Y be a positive semi-definite

matrix. Prove that |X + Y | ≥ |X|.
27. Prove that a right circulant matrix has the eigenvalue-decomposition (A.2.10).

Extend the result to left circulant matrices and to block circulant matrices.

28. Prove that ∣
∣∣Tr {XY }

∣
∣∣
2 ≤ ‖X‖2 · ‖Y ‖2 (A.4.8)

(This inequality is called the matrix Cauchy-Schwarz inequality.) Determine
a necessary and sufficient condition for equality to hold in (A.4.8).

29. Prove Equation (A.2.7).

30. Prove that the eigenvalues of a projection matrix ΠX are either zero or one.

31. Show that Π⊥
XΠ⊥

X = Π⊥
X, that Π⊥

XΠX = 0 and that Π⊥
XX = 0.

32. Let X(θ) be a matrix-valued function of a real-valued scalar variable θ and
let A and B be given constant matrices. Prove that

d

dθ
Tr {AX(θ)} = Tr

{
A

dX(θ)
dθ

}

d

dθ
Tr

{
XH(θ)AX(θ)

}
= 2ReTr

{
XH(θ)A

dX(θ)
dθ

}

d

dθ
log |X(θ)| = Tr

{
X−1(θ)

dX(θ)
dθ

}

d

dθ
Tr

{
X−1(θ)

}
= −Tr

{
X−2(θ)

dX(θ)
dθ

}

(A.4.9)
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33. Prove that Re {X}Re {Y } = 1
2Re {XY + XY ∗}.

34. Prove the “matrix inversion lemma”:

(A − CB−1D)−1 = A−1 + A−1C(B − DA−1C)−1DA−1 (A.4.10)

35. Let A be an arbitrary constant matrix and let X be a matrix whose elements
are independent and circularly symmetric Gaussian random variables with
mean zero and variance γ2. Prove that

Tr {AX} ∼ NC

(
0, γ2Tr

{
AAH

})
(A.4.11)



Appendix B

THE THEORY OF AMICABLE

ORTHOGONAL DESIGNS

An amicable orthogonal design is a set of nt × N matrices {An,Bn} that satisfy
the following equations:

AnAH
n = I,BnBH

n = I

AnAH
p = −ApA

H
n ,BnBH

p = −BpB
H
n , n �= p (B.1)

AnBH
p = BpA

H
n

We have seen in previous chapters that the theory of amicable orthogonal designs is
a cornerstone for the development of orthogonal STBC. This appendix is devoted
to the existence and construction of such designs.

We will start in Section B.1 with considering the design of {An} alone (neglect-
ing any relation between {An} and {Bn}). In a strict sense, this is only relevant
if the symbols {sn} that we want to transmit are real-valued; however, note that
by mapping a complex symbol onto two real ones, the transmission of a block of
ns complex symbols becomes equivalent to the transmission of a block of 2ns real
symbols. Next, in Section B.2 we go on to consider the case of complex symbols
and the joint design of {An,Bn} to satisfy the conditions in (B.1).

The algebraic theory that underlies the existence of matrices that satisfy (B.1)
is quite intricate. The relevant results related to the construction of such matrices
are summarized in Section B.3. A reader interested only in the applications of
orthogonal designs may go directly to Section B.3.

B.1 The Case of Real Symbols

In this section we assume that the symbols are real and that only {An} are of
interest. In this case, it would be desirable if we could choose the matrices {An} to

247
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be real-valued, since in that case all quantities under consideration would become
real-valued. It turns out that when we consider the case of real symbols we can
construct full-rate OSTBC (i.e., with ns = N) using real-valued {An}. Therefore
in what follows we will restrict our analysis to the case when {An} are real-valued
matrices. A set of matrices satisfying the corresponding conditions in (B.1) is
called an orthogonal design. Initially we constrain {An} to be square matrices,
that is N = nt, but later we relax this condition and consider the case of non-
square {An} as well. Before we present a more detailed theory concerning the
existence of matrices {An} that satisfy (B.1) we exemplify how such matrices can
sometimes be found using heuristic arguments.

Example B.1: A real orthogonal design for nt = 2.
Inspired by the well-known parameterization of real-valued orthogonal 2 × 2-
matrices, we can easily construct an Alamouti-like matrix for real symbols, and
hence two matrices A1,A2 that satisfy (B.1). A real-valued orthogonal matrix of
dimension 2× 2 takes on the following form:

[
cos(φ) sin(φ)
sin(φ) − cos(φ)

]
(B.1.1)

By multiplying (B.1.1) with a real-valued scalar λ, and setting

s1 =λ cos(φ)
s2 =λ sin(φ)

(B.1.2)

(B.1.1) can be written

X =
[
s1 s2
s2 −s1

]
(B.1.3)

which is a matrix with the sought property (i.e., a matrix that satisfies XXT =
(|s1|2+|s2|2)·I ; cf. Theorem 7.1 on page 102). The matrices A1 and A2 associated
with (B.1.3) can easily be identified, and it can be verified that these matrices
satisfy (B.1); we leave doing so to the reader.

Example B.2: A real orthogonal design for nt = 4.
Let X1 and X2 be two matrices having the form (B.1.3). Clearly, XT

1 = X1 and
XT
2 = X2. Also, it can easily be verified that X1X2 = X2X1, and hence the

matrices with the structure (B.1.3) commute with each other. Inspired by this
observation, let us take a matrix of the form (B.1.3) and substitute the scalars s1
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and s2 by two 2×2 matrices of the form (B.1.3). Doing so, we obtain an orthogonal
matrix of dimension 4× 4: [

X1 X2

X2 −X1

]
(B.1.4)

which is a linear function of four real-valued symbols. Such a matrix is effectively
an OSTBC matrix for real symbols and nt = 4 transmit antennas; the correspond-
ing matrices {Ak} can easily be found.

B.1.1 Square OSTBC Matrices (nt = N)

In this section we impose the constraint that N = nt and consider the existence
of square OSTBC matrices. The main tool for doing so is the theory of Hurwitz-
Radon matrices that was formulated almost a century ago.

Let {An} be a set of ns matrices of size N × N which satisfy the following
conditions (see (B.1)):

AnAH
n = I, n = 1, . . . , ns

AnAH
p = −ApA

H
n , n = 1, . . . , ns; p = 1, . . . , ns;n �= p

(B.1.5)

If ns = N , we can use a set of such matrices for OSTBC encoding and transmit ns

real symbols over N symbol periods; hence we have a full-rate code. If ns < N , the
rate of the code will be R = ns/N < 1. If we define V n = AnAH

1 for n = 2, . . . , ns,
then the ns − 1 matrices {V n}, of size N × N , satisfy the following conditions:

V H
n V n = I, n = 2, . . . , ns

V H
n = −V n, n = 2, . . . , ns

V H
n V p = −V H

p V n, n = 2, . . . , ns; p = 2, . . . , ns;n �= p

(B.1.6)

If An (and hence V n) are real then the set of ns − 1 matrices V n constitutes
a so-called Hurwitz-Radon (H-R) family of matrices of order N . The order N
reflects their size; from here onward we say order instead of size to conform with
the terminology in the literature on orthogonal designs (see, e.g., [Geramita and
Seberry, 1979]). Clearly, given a set of matrices {An} we can construct the H-R
family by using the above definition of {V n}; conversely, if we have a H-R family
{V n}, n = 2, . . . , ns we can augment it with an identity matrix V 1 = I and obtain
a set of matrices {An} that satisfy (B.1.5). Therefore there is a simple mapping
between a set of ns real matrices that satisfy (B.1.5) and the corresponding H-R
family.

Next we consider the existence of a H-R family of matrices. The following
theorem, which is due to Radon, gives a precise description of the conditions
under which a H-R family of order N exists.
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Theorem B.1: Existence of Hurwitz-Radon families.
Let N be a given integer and let the integers a, b, c and d be defined implicitly via:

N = 2ab
a = 4c + d, 0 ≤ d < 4, c ≥ 0

(B.1.7)

where b is an odd number. Also, let ρ(N) be defined through:

ρ(N) = 8c + 2d (B.1.8)

Then

1. Any H-R family of order N has fewer than ρ(N) members.

2. For any N there is a H-R family of order N having exactly ρ(N)−1 members.

Proof: The proof is given in [Radon, 1922], [Geramita and Seberry, 1979]
and is not repeated here. However, later in this section we will give a constructive
proof of a variant of this theorem.

From Theorem B.1 we obtain the following result.

Theorem B.2: Existence of Hurwitz-Radon families, cont’d.
A H-R family of N − 1 matrices of size N × N exists only if N = 2, 4 or 8.

Proof: Note that N = 2ab = 24c+db = 24c2db and that ρ(N) = 8c + 2d. If
ρ(N)− 1 = N − 1, we must have

8c + 2d = 24c2db (B.1.9)

Since b, c and d are non-negative integers and 0 ≤ d < 4, the above equation holds
if and only if c = 0, b = 1 and d = 0, 1, 2 or 3. The corresponding values of N (and
of ρ(N), since we have ρ(N) = N) are 1, 2, 4 and 8. Excluding the degenerate
case N = 1, the theorem follows.

If we have a H-R family of N − 1 matrices of order N , then by including the
identity matrix of order N , i.e., A1 = I, we obtain a family of N matrices of order
N which satisfy (B.1.5). In the context of OSTBC, this corresponds to a full-rate
code for real symbols. Therefore, the implication of Theorem B.2 is that if we
constrain {An} to be square matrices (nt = N), then a square full-rate OSTBC
for real symbols exists only when the number of transmit antennas is nt = 2, 4 or
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8. However, non-square full-rate OSTBC matrices exist for any other values of nt

(see below).
As an aside, note that it is necessary that N ≥ nt (otherwise, An cannot satisfy

AnAH
n = I). When N = nt we say that the corresponding transmission scheme is

a minimal delay design; the reason for this terminology is that in this case we have
the minimum possible decoding delay. Hence, in words, Theorem B.2 states that
minimal delay OSTBC schemes for real-valued symbols exist only for nt = 2, 4 or
8.

The code matrices discussed so far are real-valued, but it turns out that we can
even constrain their elements to be integers. An integer matrix is a matrix whose
elements are integers, and a H-R family whose members are all integer matrices
is called an integer H-R family. Since the members of an integer H-R family are
unitary, they can have elements only from the set {1, 0,−1}. Such integer H-R
matrices are especially attractive, since the associated OSTBC matrices X can
be formed by the transmitter without any multiplication. The existence of such
integer H-R matrices is considered in the following theorem.

Theorem B.3: Existence of integer Hurwitz-Radon families.
For any N , there exists an integer H-R family of order N that has ρ(N) − 1
members.

Proof: See [Geramita and Seberry, 1979]. In Section B.4 we present a compact
and constructive proof.

We illustrate the result of Theorem B.3 for the case of nt = 4 in the following
example.

Example B.3: Real orthogonal design for nt = 4.
For the case of nt = 4 transmit antennas a set of 4 matrices which meet the
conditions in (B.1.5) is given by:

A1 =

⎡

⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦ A3 =

⎡

⎢⎢
⎣

0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

⎤

⎥⎥
⎦

A2 =

⎡

⎢
⎢
⎣

0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

⎤

⎥
⎥
⎦ A4 =

⎡

⎢
⎢
⎣

0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

⎤

⎥
⎥
⎦

(B.1.10)
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If {s1, s2, s3, s4} is a set of four symbols to be transmitted, then the OSTBC matrix
is given by:

X =

⎡

⎢
⎢
⎣

s1 s2 −s3 −s4
−s2 s1 s4 −s3
s3 −s4 s1 −s2
s4 s3 s2 s1

⎤

⎥
⎥
⎦ (B.1.11)

which is slightly different from the “ad-hoc” construction in Example B.2.

B.1.2 Non-Square OSTBC Matrices (nt < N)

Next we relax the constraint that N = nt; hence we assume that nt < N . In order
to obtain a full-rate OSTBC design, we must find N matrices of size nt×N which
satisfy the conditions in (B.1.5). From Theorem B.2 we know that full-rate square
designs exist only for the case of nt = 2, 4 or 8 transmit antennas. For the case of
nt = 3, 5, 6, and 7 we can easily construct “wide” matrices {An} simply by taking
any nt rows of an orthogonal design for nt = 4 or nt = 8.

Specifically, if {A(4)
n } is a set of four 4× 4-matrices that satisfy (B.1.5) and we

let, for instance,

Φ3 =

⎡

⎣
1 0 0 0
0 1 0 0
0 0 1 0

⎤

⎦ (B.1.12)

then
(
Φ3A(4)

n

)(
Φ3A(4)

n

)H =Φ3A(4)
n A(4)H

n ΦH
3 = Φ3ΦH

3 = I
(
Φ3A(4)

n

)(
Φ3A

(4)
k

)H =Φ3A(4)
n A

(4)H
k ΦH

3

=−Φ3A(4)
k A(4)H

n ΦH
3 = −(

Φ3A
(4)
k

)(
Φ3A(4)

n

)H
(B.1.13)

Hence, the set of matrices {Φ3A(4)
n } satisfy (B.1.5) and is therefore an orthogonal

design for nt = 3. For nt = 5, 6 and 7, we can obtain a similar construct by taking
5, 6 and 7 rows of the {An} matrices for nt = 8.

Clearly, the non-square OSTBC designs for nt = 3, 5, 6 and 7 obtained as
outlined above achieve full data rate (since ns = N). However, it is a valid
question whether they are the best possible constructs in the sense that there is
no other construct with a smaller number of columns, that satisfies (B.1.5) as well
as achieves the same rate. Such a construct, if it exists, would have a smaller
decoding delay at the same data rate. We will not elaborate on this issue in
the present text; the reader is referred to [Ganesan and Stoica, 2001b] for a
more detailed discussion on these aspects. The cited paper also presents a method
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for constructing non-square (wide) OSTBC matrices for any nt. Note that the
corresponding set of wide matrices {An} is called a generalized orthogonal design.

We conclude this section by presenting the {An} construct obtained via the
above method for nt = 3.

Example B.4: Non-square real orthogonal design for nt = 3.
Let us consider a system with nt = 3 transmit antennas. Following the construc-
tion method outlined above, we get from (B.1.10) and (B.1.12) the following set
of 3× 4 matrices:

A1 =

⎡

⎣
1 0 0 0
0 1 0 0
0 0 1 0

⎤

⎦ A3 =

⎡

⎣
0 0 −1 0
0 0 0 −1
1 0 0 0

⎤

⎦

A2 =

⎡

⎣
0 1 0 0
−1 0 0 0
0 0 0 −1

⎤

⎦ A4 =

⎡

⎣
0 0 0 −1
0 0 1 0
0 −1 0 0

⎤

⎦

(B.1.14)

B.2 The Case of Complex Symbols

In the previous Section B.1 we explained that for any number of transmit antennas
nt, we can always find a set of N matrices {An} of size nt×N (with N ≥ nt) that
satisfy (B.1), and hence can be used to build a full-rate OSTBC for real symbols.
In this section we go on to discuss the joint design of {An,Bn}, which provides
us with a means for transmitting complex symbols. We start by observing that
it is straightforward to use the full-rate codes obtained for real symbols to get
a rate-1/2 code for complex symbols. After doing so, we proceed to discuss the
existence of {An,Bn} and how the design of such matrices relates to the theory
of amicable orthogonal designs.

B.2.1 Rate-1/2 Complex OSTBC Designs

A rate-1/2 design can easily be obtained by taking a block of ns = N/2 complex
symbols {s1, . . . , sN/2} and transmitting their real and imaginary parts separately.
The resulting code matrix is:

X =

[
ns∑

n=1

s̄nAn

ns∑

n=1

s̃nAn

]

(B.2.1)
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where {An} are nt × N/2 matrices designed for the transmission of real symbols
(see Section B.1; as explained there N must be chosen as a function of nt). Hence,
the block of N/2 complex symbols has been mapped onto a block of N real symbols,
which are transmitted over N time intervals; the so-obtained code has a rate of
R = 1/2. The reader can verify that XXH = ‖s‖2 · I and hence that (B.1) is
satisfied (cf. Theorem 7.1 on page 102).

Example B.5: Rate-1/2 OSTBC for nt = 4.
For the case of nt = 4 transmit antennas, the code matrix in (B.2.1) takes on the
following form (cf. (B.1.11)):

⎡

⎢
⎢
⎣

s̄1 s̄2 −s̄3 −s̄4 s̃1 s̃2 −s̃3 −s̃4
−s̄2 s̄1 s̄4 −s̄3 −s̃2 s̃1 s̃4 −s̃3
s̄3 −s̄4 s̄1 −s̄2 s̃3 −s̃4 s̃1 −s̃2
s̄4 s̄3 s̄2 s̄1 s̃4 s̃3 s̃2 s̃1

⎤

⎥
⎥
⎦ (B.2.2)

B.2.2 Full-Rate Designs

The simple design in (B.2.1) makes only use of the matrices {An}. Of course,
the important question is whether the rate can be improved if we design both
{An} and {Bn} jointly, so that they satisfy the conditions in (B.1), instead of
designing {An} alone. As in the previous section we first consider the case of
square matrices; that is we set N = nt.

Let {An}sn=1 and {Bn}tn=1 be a set of N × N matrices which satisfy the
conditions in (B.1). If we have such a set of matrices then we can transmit s + t
real symbols by re-mapping these s+t real symbols onto min{s, t} complex symbols
and (max{s, t} −min{s, t}) real symbols in an appropriate way. Since we have a
scheme for transmitting N real symbols during N symbol periods, in order to
benefit from the joint design of {An,Bn} we need that s + t ≥ N .

Suppose that we have a set of s+t real matrices {An}sn=1, {Bn}tn=1 that satisfy
(B.1). If we define V n = AnAH

1 , n = 2, . . . , s and W p = BpA
H
1 , p = 1, . . . , t, then
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the N × N matrices {V n} and {W p} satisfy the following conditions:

V n = −V H
n , n = 2, . . . , s

W n = WH
n , n = 1, . . . , t

V nV H
n = 2I, n = 2, . . . , s

W nWH
n = I, n = 1, . . . , t

V nV H
p + V pV

H
n = 0, n = 2, . . . , s; p = 2, . . . , s; n �= p

W nWH
p +W pW

H
n = 0, n = 1, . . . , t; p = 1, . . . , t; n �= p

V nWH
p − W pV

H
n = 0, n = 2, . . . , s; p = 1, . . . , t

(B.2.3)

Such a family of real matrices is called a H-R family of type (s − 1, t) of order
N [Geramita and Seberry, 1979], or simply an H-R(s − 1, t) family. If we
have an H-R(s − 1, t) family, then by including the N × N identity matrix, i.e.,
letting V 1 = I, we obtain a family of s + t matrices which satisfy (B.1). Hence
there is a one-to-one mapping between s+ t real matrices that satisfy (B.1) and a
H-R(s − 1, t) family.

The existence of H-R families that satisfy (B.2.3) is linked to the representation
theory of Clifford algebras and was addressed in [Kawada and Iwahori, 1950].
The associated mathematics is far from trivial. The following theorem summarizes
one of the key results in a manner suitable to our problem.

Theorem B.4: Existence of H − R(s − 1, t) families.
Let N be an arbitrary integer. Define c and d, where 0 ≤ d < 4, implicitly through
the relation N = 24c+d, and let ρt(N)− 1 = 8c− t+ δ, where, for a given t and d,
the values of δ are as shown in table B.1. Then for any t ≤ ρt(N), there exists an
H-R(ρt(N)− 1,t) family of integer matrices of order N .

Proof: See [Geramita and Seberry, 1979].

If we have an H-R(s−1, t) family of order N ×N and with s = t = N , we have
effectively a full-rate OSTBC for complex symbols. Such a design, if it exists, is
called a full-rate design. Since we have N = nt, these full-rate designs will also
be delay optimal. Clearly, the existence of {V j} and {W j} with s = t = N
implies the existence of two distinct “regular” H-R families of order N (as defined
in (B.1.6)), each with N −1 members. Since an H-R family of order N with N −1
members exists only for N = 2, 4 or 8 (see Theorem B.2), it follows immediately
that it is impossible to construct a full-rate square OSTBC design for complex



256 The Theory of Amicable Orthogonal Designs Appendix B

d
t(mod 4) 0 1 2 3

0 0 1 3 7
1 1 2 3 5
2 -1 3 4 5
3 -1 1 5 6

Table B.1. δ as function of d and t (see Theorem B.4).

symbols for any other values of N . In fact, it turns out that the only value of N
for which a full-rate square design exists is N = 2. We state this result in the
following theorem.

Theorem B.5: Nonexistence of full-rate OSTBC for nt > 2.
A full-rate square OSTBC design for complex symbols exists only for nt = N = 2.

Proof: Following the argument in the paragraph preceding this theorem, we need
to consider only the cases of N = 2, 4, 8. For a full-rate design we need s = t = N
in (B.2.3). If we fix t = N , then the maximum value of s is given by ρN (N). For
a full data rate design we require that ρN (N) = N (see Theorem B.4). From the
definition of ρt(N) we note that

ρ2(2) = 2 (B.2.4)
ρ4(4) = 0 (B.2.5)
ρ8(8) = 0 (B.2.6)

which completes the proof.

An example of a full-rate design when nt = N = 2 is the Alamouti code
discussed in Section 6.3.1. In Example 7.2 (see page 103) we gave the matrices An

and Bn associated with this code. Theorem B.5 asserts that the construction in
[Alamouti, 1998] cannot be extended to more than two transmit antennas.

B.2.3 Achieving Rates Higher than 1/2 for nt ≥ 2

We know that a complex design of rate 1/2 can always be obtained (see (B.2.1)). In
the previous section, we proved that a full-rate square design for complex symbols
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exists only for nt = 2 transmit antennas. We next go on to see if we can get
rates higher than 1/2 by simultaneously designing {An,Bn} when nt > 2. The
first step towards this end is the following existence theorem. Note that we still
restrict our discussion to the case of nt = N .

Theorem B.6: Wolfe’s slide lemma.
Assume that there exist ns pairs of matrices {An}ns

n=1, {Bn}ns
n=1 of size nt × nt

which satisfy the conditions in (B.1). Then there exist also ns+1 pairs of matrices
of size 2nt × 2nt which satisfy the conditions in (B.1).

Proof: We give a constructive proof that is based on [Geramita and Seberry,
1979].

Let {An}ns
n=1 and {Bn}ns

n=1 be a set of nt × nt matrices which satisfy the
conditions in (B.1). Define

V n = AnAH
1 n = 2, . . . , ns

W k = BkA
H
1 k = 1, . . . , ns

and let

M =
[
0 1
−1 0

]
, P =

[
0 1
1 0

]
, R =

[
1 0
0 −1

]

Consider the ns + 1 pairs of matrices of size 2nt × 2nt given by:

Ǎ1 = I2nt

Ǎn = P ⊗ V n 2 ≤ n ≤ ns

Ǎns+1 = M ⊗ Int

B̌k = P ⊗ W k 1 ≤ k ≤ ns

B̌ns+1 = R ⊗ Int

(B.2.7)
Then it can be verified that the matrices {Ǎn, B̌n} in (B.2.7) satisfy the conditions
in (B.1).

Theorem B.6 is used in the next examples to obtain some useful OSTBC de-
signs.

Example B.6: Rate-3/4 OSTBC for nt = 4.
From (7.4.7) we have two pairs of 2 × 2 matrices which satisfy the conditions in
(B.1). Using the construction method given in the proof of Theorem B.6 we can
construct, starting from (7.4.7), three pairs of 4 × 4 matrices which satisfy the
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conditions in (B.1). These three pairs of matrices are given by:

A1 =

⎡

⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦ B1 =

⎡

⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎤

⎥⎥
⎦

A2 =

⎡

⎢⎢
⎣

0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

⎤

⎥⎥
⎦ B2 =

⎡

⎢⎢
⎣

0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

⎤

⎥⎥
⎦

A3 =

⎡

⎢
⎢
⎣

0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

⎤

⎥
⎥
⎦ B3 =

⎡

⎢
⎢
⎣

0 0 0 −1
0 0 −1 0
0 −1 0 0
−1 0 0 0

⎤

⎥
⎥
⎦

(B.2.8)

The associated code matrix X is given by:

X =

⎡

⎢⎢
⎣

s1 0 s2 −s3
0 s1 s∗3 s∗2

−s∗2 −s3 s∗1 0
s∗3 −s2 0 s∗1

⎤

⎥⎥
⎦ (B.2.9)

which is a rate-3/4 OSTBC for complex symbols for nt = 4 transmit antennas.

Example B.7: Rate-1/2 OSTBC for nt = 8.
Proceeding in the same way we can construct four pairs of 8×8 matrices using the
three pairs of 4× 4 matrices in (B.2.8). The result is best summarized in terms of
the associated OSTBC matrix, which is given by:

X =

⎡

⎢⎢
⎢⎢
⎢
⎢⎢
⎢⎢
⎢
⎣

s1 0 0 0 s4 0 s2 −s3
0 s1 0 0 0 s4 s∗3 s∗2
0 0 s1 0 −s∗2 −s3 s∗4 0
0 0 0 s1 s∗3 −s2 0 s∗4

−s∗4 0 s2 −s3 s∗1 0 0 0
0 −s∗4 s∗3 s∗2 0 s∗1 0 0

−s∗2 −s3 −s4 0 0 0 s∗1 0
s∗3 −s2 0 −s4 0 0 0 s∗1

⎤

⎥⎥
⎥⎥
⎥
⎥⎥
⎥⎥
⎥
⎦

(B.2.10)
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Note that the decoding delay associated with (B.2.10) is equal to 8, whereas an
OSTBC matrix for nt = 8 derived in a manner similar to (B.2.1) would have a
decoding delay of 16.

With the code in Example B.7, we transmit four complex symbols over eight
symbol periods, and hence the rate is equal to R = 4/8 = 1/2. It turns out
that there is no point in using this construction method for more than 8 transmit
antennas. In particular, if we extend the construction to more than 8 transmit
antennas then the rate becomes less than 1/2, and hence it is better to use the
construction in (B.2.1). For example, using the four pairs of 8×8 matrices designed
for nt = 8, we can apply the construction method in the proof of Theorem B.6 to
design five pairs of 16× 16 matrices. However, in that case we will transmit only
5 symbols over 16 symbol periods; consequently the rate becomes 5/16 which is
less than 1/2, and hence it is better to use the code in (B.2.1).

We started with a full-rate (square) design for nt = 2 transmit antennas us-
ing real matrices {An,Bn} and constructed a square rate-3/4 design for nt = 4
transmit antennas and a square rate-1/2 design for nt = 8 transmit antennas. The
main tool for doing that was the algorithm described in the proof of Theorem B.6,
but this method considered only the case when An and Bn are real matrices. Can
we gain anything if we let {An,Bn} be complex? Unfortunately, the answer to
this question is no, as explained below.

Consider a set of s matrices {An} and t matrices {Bn} of size nt × nt which
satisfy the conditions in (B.1). We let {An,Bn} be complex nt × nt matrices.
Define

P k = Ak k = 1, . . . , s
P s+k = iBk k = 1, . . . , t

The s+ t complex matrices {P k}s+t
k=1 satisfy the conditions

P kP
H
k = I k = 1, . . . , s + t

P kP
H
n = −P nPH

k k = 1, . . . , s + t; n = 1, . . . , s + t; n �= k
(B.2.11)

We have the following theorem.

Theorem B.7: Herstein theorem.
Let nt = 2ab where b is odd. Let s+ t be the number of complex matrices {P k} of
size nt × nt which satisfy the conditions in (B.2.11). Then s + t ≤ 2a + 2.

Proof: See [Herstein, 1968].

For nt = 2 transmit antennas we have a = 1, and we already know a design
with s = t = 2. Now by Theorem B.7, s + t ≤ 2a + 2 = 4. For the design we
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have, s + t = 4. Thus we have achieved the bound specified by Theorem B.7 for
the case of nt = 2 antennas. If we set s = t, then the bound in Theorem B.7
becomes, 2t ≤ 2a+2 or t ≤ a+1. Suppose we have a construction with t = a+ 1
for some nt = 2a. Then by using the construction in the proof of Theorem B.6
we can obtain a design with t = a + 2 for nt = 2a+1. Since we have a real design
with s = t = a + 1 = 2 for a = 1, we can obtain a real design with s = t = a + 1
for any nt = 2a. Thus the bound in Theorem B.7 can be achieved for any nt = 2a

using real integer matrices {An,Bn}. It follows that we do not gain anything
by letting {An,Bn} be complex valued; moreover for the case of nt = 2a, there
exists no other method to construct (square) {An,Bn} that is better than the one
described in the proof of Theorem B.6.

What happens when nt �= 2a ? If we restrict the matrices to be square, then
the achievable rate may be much smaller than 1/2. For example if we have nt = 5
transmit antennas, then a = 0, b = 5 and we get s + t ≤ 2a + 2 = 2. The code
would transmit ns = s = t = 1 symbol over nt = 5 symbol periods giving a rate
of 1/5. To remedy this situation we have to consider non-square matrices, which
we do next.

B.2.4 Generalized Designs for Complex Symbols

So far we have restricted the matrices {An} and {Bn} to be square. In this case
we obtained a full-rate code for nt = 2 transmit antennas, a rate 3/4 code for
nt = 4 transmit antennas and a rate 1/2 code for nt = 8 transmit antennas. When
nt �= 2a the rates could be much less than 1/2 which would lead to code matrices
of no use since we already have a scheme for rate-1/2 codes (see (B.2.1)).

If we remove the restriction that {An,Bn} be square we can get rates which
are greater than or equal to 1/2. For instance, for nt = 3 transmit antennas, we
can easily obtain a rate-3/4 code by taking the first three rows of the design for
four transmit antennas in (B.2.9). In the case of nt = 5, 6, 7 transmit antennas,
we can get a rate-1/2 code by taking the first 5,6 and 7 rows, respectively, of the
code matrix for eight transmit antennas in (B.2.10).

B.2.5 Discussion

In the previous subsections, we have presented a number of existence theorems and
construction methods for complex OSTBC. Only in the case of nt = 2 were we
able to find a full-rate code; for nt = 3, 4 we found a rate-3/4 code and for a larger
number of transmit antennas we used a construction that gives rate R = 1/2. For
real symbols, we could always find a full-rate code. Is it possible to get a full-rate
code for complex symbols when nt > 2? The answer to this question appears to
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be negative. For example, it was proved in [Su and Xia, 2003] that no amicable
orthogonal design for nt > 2 exists with rate > 3/4; hence the rate-3/4 code for
complex symbols for nt = 3 and 4 transmit antennas reaches the maximum rate.
Further results on achievable rates for large number of transmit antennas can be
found in [Tirkkonen and Hottinen, 2002].

B.3 Summary

We summarize in Table B.2 the best known OSTBC designs and their properties
for real and complex symbols, for different number of transmit antennas. The
table also shows whether a design has the minimal delay property, and it also
gives a reference to the equation or theorem that can be used to construct the
corresponding code matrices.

B.4 Proofs

Proof of Theorem B.3

Observe first that we can write any number N as N = 2ab, where a and b are
integers and b is odd. Then from the definition of ρ(N) it can be seen that
ρ(N) = ρ(2a) since b does not enter in the definition of ρ(N) (in other words,
ρ(N) depends solely on a).

Suppose we have a Hurwitz-Radon family with ρ(N)− 1 members for N = 2a.
The matrices in this family are of size N×N . Now suppose we have another number
M = 2ab = Nb where b is odd. Then we know that ρ(M) = ρ(2ab) = ρ(2a) = ρ(N).
If we take the Kronecker product of Ib with each matrix in the Hurwitz-Radon
family of order N , then we obtain another Hurwitz-Radon family of Nb × Nb
matrices. This new family will have ρ(M) = ρ(N) members and will be of order
M = Nb. It follows that we need to prove the proposition only for N = 2a.

Let N1 = 24s+3, N2 = 24(s+1), N3 = 24(s+1)+1, N4 = 24(s+1)+2 and N5 =
24(s+1)+3, where s ≥ 0 is an integer. Then:

ρ(N2) = ρ(N1) + 1
ρ(N3) = ρ(N1) + 2
ρ(N4) = ρ(N1) + 4
ρ(N5) = ρ(N1) + 8

For any matrices V and W , let V ⊗ W denote the Kronecker product of V
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Symbols nt N Rate MD Construction rule
2 2 1 yes Eq. (B.1.3)
3 4 1 no Eq. (B.1.14)
4 4 1 yes Eq. (B.1.10)

Real 5 8 1 no Sec. B.1.2
6 8 1 no Sec. B.1.2
7 8 1 no Sec. B.1.2
8 8 1 yes Th. B.3
> 8 N chosen such that 1 no [Ganesan and

Stoica, 2001b]
nt ≤ ρ(N).

2 2 1 yes Eq. (7.4.7)
3 4 3/4 no Eq. (7.4.8)
4 4 3/4 yes Eq. (7.4.10)

Complex 5 8 1/2 no Sec. B.2.4
6 8 1/2 no Sec. B.2.4
7 8 1/2 no Sec. B.2.4
8 8 1/2 yes Eq. (B.2.10)
> 8 N chosen such that 1/2 no

nt ≤ ρ(N). Eq. (B.2.1)

Table B.2. Summary of the best known OSTBC for real and complex symbols, respectively, and
for different values of the number of transmit antennas nt. In the table, MD stands for “minimal
delay.”

and W . Let

C =
[
0 1
−1 0

]
P =

[
0 1
1 0

]
R =

[
1 0
0 −1

]
(B.4.1)

The following results can be verified by a tedious check.

(i) {C} is an H-R family of ρ(2)− 1 integer matrices of order 2.

(ii) {C⊗I2,P ⊗C,R⊗C} is an H-R family of ρ(4)−1 integer matrices of order
4.

(iii) {I2 ⊗ C ⊗ I2, I2 ⊗ P ⊗ C,R ⊗ R ⊗ C,P ⊗ R ⊗ C,C ⊗ P ⊗ R,C ⊗ P ⊗
P ,C ⊗ R ⊗ I2} is an H-R family of ρ(8)− 1 integer matrices of order 8.
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The results above handle the cases N = 2t, 4t, 8t, t odd. It can be easily
verified that if {M 1, . . . ,M s} is an H-R family of order N , then

(1) {C ⊗ IN}⋃{R ⊗ M l|l = 1, . . . , s} is an H-R family of s + 1 integer matrices
of order 2N .

If, in addition, {L1, . . . ,Lm} is an H-R family of integer matrices of
order k, then

(2) {P ⊗ Ik ⊗M l|1 ≤ l ≤ s}⋃{R⊗Lp ⊗ IN |1 ≤ p ≤ m}⋃{C ⊗ INk} is an H-R
family of s+ m + 1 integer matrices of order 2Nk.

Using the definition of N1, . . . , N5, we may proceed by induction: Starting with
the fact (iii) above gives us the case N1 = 23.

Now from the definition of N1 and N2 and also from the definition of ρ(N1)
and ρ(N2) we can see that if we have ρ(N1)−1 matrices of order N , then by using
(1) above, we can construct ρ(N2)−1 matrices of order N2. Similarly by using (2)
with k = N1, N = 2, we can construct ρ(N3)− 1 matrices of order N3. Using (2)
with k = N1 and N = 4 gives us ρ(N4)− 1 matrices of order N4. Finally by using
(2) with k = N1 and N = 8 we can construct ρ(N5)− 1 matrices of order N5.

Thus starting with a construction for N = N1 = 23 we got matrices for orders
N2 = 24, N3 = 25, N4 = 26, and N5 = 27. Note that the construction for getting
matrices of orders N2, . . . , N5 will work as long as we have a set of matrices with
ρ(N1)− 1 members for N1 = 24s+3 for some non-negative s. We started with a set
of matrices for N1 = 23 (and hence s = 0) and ended up with a set of matrices for
N5 = 27. Now 27 = 24s+3 with s = 1. Therefore we can repeat the construction
and proceed similarly to get matrices for higher powers of 2.
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